Aydin Fikret, Zhan Cheng, Ritt Cody, Epsztein Razi, Elimelech Menachem, Schwegler Eric, Pham Tuan Anh
Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA.
Phys Chem Chem Phys. 2020 Jan 28;22(4):2540-2548. doi: 10.1039/c9cp06163k. Epub 2020 Jan 16.
Understanding ion solvation in liquid water is critical in optimizing materials for a wide variety of emerging technologies, including water desalination and purification. In this work, we report a systematic investigation and comparison of solvated K and NH using first-principles molecular dynamics simulations. Our simulations reveal a strong analogy in the solvation properties of the two ions, including the size of the solvation shell as well as the solvation strength. On the other hand, we find that the local water structure in the ion solvation is significantly different; specifically, NH yields a smaller number of water molecules and a more ordered water structure in the first solvation shell due to the formation of hydrogen bonds between the ion and water molecules. Finally, our simulations indicate that a comparable solvation strength of the two ions is a result of an interplay between the nature of ion-water interaction and number of water molecules that can be accommodated in the ion solvation shell.
了解液态水中的离子溶剂化对于优化包括海水淡化和净化在内的各种新兴技术的材料至关重要。在这项工作中,我们使用第一性原理分子动力学模拟报告了对溶剂化钾离子和铵离子的系统研究和比较。我们的模拟揭示了这两种离子在溶剂化性质上有很强的相似性,包括溶剂化壳层的大小以及溶剂化强度。另一方面,我们发现离子溶剂化中的局部水结构有显著差异;具体而言,由于离子与水分子之间形成氢键,铵离子在第一溶剂化壳层中产生的水分子数量较少且水结构更有序。最后,我们的模拟表明,两种离子相当的溶剂化强度是离子 - 水相互作用的性质与可容纳在离子溶剂化壳层中的水分子数量之间相互作用的结果。