Choo Xin Yi, Lim Yu Ming, Katwadi Khairunnisa, Yap Lynn, Tryggvason Karl, Sun Alfred Xuyang, Li Shang, Handoko Lusy, Ouyang John F, Rackham Owen J L
Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.
National Neuroscience Institute, Singapore 308433.
ACS Synth Biol. 2021 Mar 19;10(3):640-645. doi: 10.1021/acssynbio.0c00499. Epub 2021 Feb 24.
The combination of single-cell RNA sequencing with CRISPR inhibition/activation provides a high-throughput approach to simultaneously study the effects of hundreds if not thousands of gene perturbations in a single experiment. One recent development in CRISPR-based single-cell techniques introduces a feature barcoding technology that allows for the simultaneous capture of mRNA and guide RNA (gRNA) from the same cell. This is achieved by introducing a capture sequence, whose complement can be incorporated into each gRNA and that can be used to amplify these features prior to sequencing. However, because the technology is in its infancy, there is little information available on how such experimental parameters can be optimized. To overcome this, we varied the capture sequence, capture sequence position, and gRNA backbone to identify an optimal gRNA scaffold for CRISPR activation gene perturbation studies. We provide a report on our screening approach along with our observations and recommendations for future use.
将单细胞RNA测序与CRISPR抑制/激活相结合,提供了一种高通量方法,可在单个实验中同时研究成百上千个基因扰动的影响。基于CRISPR的单细胞技术的一项最新进展引入了一种特征条形码技术,该技术能够从同一细胞中同时捕获mRNA和引导RNA(gRNA)。这是通过引入一个捕获序列来实现的,该序列的互补序列可掺入每个gRNA中,并且可用于在测序前扩增这些特征。然而,由于该技术尚处于起步阶段,关于如何优化此类实验参数的可用信息很少。为了克服这一问题,我们改变了捕获序列、捕获序列位置和gRNA骨架,以确定用于CRISPR激活基因扰动研究的最佳gRNA支架。我们提供了一份关于我们筛选方法的报告,以及我们的观察结果和未来使用建议。