Suppr超能文献

Multiple Degree Total Variation (MDTV) Regularization for Image Restoration.

作者信息

Hu Yue, Jacob Mathews

机构信息

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China.

Department of Electrical and Computer Engineering, University of Iowa, IA, USA.

出版信息

Proc Int Conf Image Proc. 2016 Sep;2016:1958-1962. doi: 10.1109/icip.2016.7532700. Epub 2016 Aug 19.

Abstract

We introduce a novel image regularization termed as multiple degree total variation (MDTV). This type of regularization combines the first and second degree directional derivatives, thus providing a good balance between preservation of edges and region smoothness. In order to solve the resulting optimization problem, we proposed a fast majorize minimize algorithm. We demonstrate the utility of the MDTV regularization in the context of image denoising and compressed sensing. We compare the proposed method with standard TV, and the state of the art higher degree methods, including higher degree total variation (HDTV) and total generalized variation (TGV) based schemes. Numerical results indicate that MDTV penalty provides improved image recovery performance.

摘要

相似文献

1
Multiple Degree Total Variation (MDTV) Regularization for Image Restoration.
Proc Int Conf Image Proc. 2016 Sep;2016:1958-1962. doi: 10.1109/icip.2016.7532700. Epub 2016 Aug 19.
2
A FAST MAJORIZE MINIMIZE ALGORITHM FOR HIGHER DEGREE TOTAL VARIATION REGULARIZATION.
Proc IEEE Int Symp Biomed Imaging. 2013:326-329. doi: 10.1109/ISBI.2013.6556478.
3
Higher degree total variation (HDTV) regularization for image recovery.
IEEE Trans Image Process. 2012 May;21(5):2559-71. doi: 10.1109/TIP.2012.2183143. Epub 2012 Jan 9.
4
Generalized higher degree total variation (HDTV) regularization.
IEEE Trans Image Process. 2014 Jun;23(6):2423-35. doi: 10.1109/TIP.2014.2315156. Epub 2014 Apr 1.
5
s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography.
Front Neurosci. 2016 Nov 28;10:543. doi: 10.3389/fnins.2016.00543. eCollection 2016.
6
Speckle reduction via higher order total variation approach.
IEEE Trans Image Process. 2014 Apr;23(4):1831-43. doi: 10.1109/TIP.2014.2308432.
7
Second-order TGV model for Poisson noise image restoration.
Springerplus. 2016 Aug 5;5(1):1272. doi: 10.1186/s40064-016-2929-3. eCollection 2016.
8
Image Denoising Using a Compressive Sensing Approach Based on Regularization Constraints.
Sensors (Basel). 2022 Mar 11;22(6):2199. doi: 10.3390/s22062199.
9
Higher order total variation regularization for EIT reconstruction.
Med Biol Eng Comput. 2018 Aug;56(8):1367-1378. doi: 10.1007/s11517-017-1782-z. Epub 2018 Jan 8.
10
Compressed sensing MRI via fast linearized preconditioned alternating direction method of multipliers.
Biomed Eng Online. 2017 Apr 27;16(1):53. doi: 10.1186/s12938-017-0343-x.

本文引用的文献

1
Generalized higher degree total variation (HDTV) regularization.
IEEE Trans Image Process. 2014 Jun;23(6):2423-35. doi: 10.1109/TIP.2014.2315156. Epub 2014 Apr 1.
2
Hessian Schatten-norm regularization for linear inverse problems.
IEEE Trans Image Process. 2013 May;22(5):1873-88. doi: 10.1109/TIP.2013.2237919. Epub 2013 Jan 4.
3
Higher degree total variation (HDTV) regularization for image recovery.
IEEE Trans Image Process. 2012 May;21(5):2559-71. doi: 10.1109/TIP.2012.2183143. Epub 2012 Jan 9.
4
Fourth-order partial differential equations for noise removal.
IEEE Trans Image Process. 2000;9(10):1723-30. doi: 10.1109/83.869184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验