Suppr超能文献

用于噪声去除的四阶偏微分方程。

Fourth-order partial differential equations for noise removal.

作者信息

You Y L, Kaveh M

机构信息

Digital Theater Syst. Inc., Agoura Hills, CA 91301, USA.

出版信息

IEEE Trans Image Process. 2000;9(10):1723-30. doi: 10.1109/83.869184.

Abstract

A class of fourth-order partial differential equations (PDEs) are proposed to optimize the trade-off between noise removal and edge preservation. The time evolution of these PDEs seeks to minimize a cost functional which is an increasing function of the absolute value of the Laplacian of the image intensity function. Since the Laplacian of an image at a pixel is zero if the image is planar in its neighborhood, these PDEs attempt to remove noise and preserve edges by approximating an observed image with a piecewise planar image. Piecewise planar images look more natural than step images which anisotropic diffusion (second order PDEs) uses to approximate an observed image. So the proposed PDEs are able to avoid the blocky effects widely seen in images processed by anisotropic diffusion, while achieving the degree of noise removal and edge preservation comparable to anisotropic diffusion. Although both approaches seem to be comparable in removing speckles in the observed images, speckles are more visible in images processed by the proposed PDEs, because piecewise planar images are less likely to mask speckles than step images and anisotropic diffusion tends to generate multiple false edges. Speckles can be easily removed by simple algorithms such as the one presented in this paper.

摘要

提出了一类四阶偏微分方程(PDEs)来优化去噪和边缘保留之间的权衡。这些偏微分方程的时间演化旨在最小化一个代价泛函,该泛函是图像强度函数拉普拉斯算子绝对值的增函数。由于如果图像在其邻域内是平面的,则图像在像素处的拉普拉斯算子为零,因此这些偏微分方程试图通过用分段平面图像逼近观测图像来去除噪声并保留边缘。分段平面图像比各向异性扩散(二阶偏微分方程)用于逼近观测图像的阶梯图像看起来更自然。因此,所提出的偏微分方程能够避免在各向异性扩散处理的图像中广泛出现的块状效应,同时实现与各向异性扩散相当的去噪程度和边缘保留程度。尽管两种方法在去除观测图像中的斑点方面似乎相当,但在所提出的偏微分方程处理的图像中斑点更明显,因为分段平面图像比阶梯图像更不容易掩盖斑点,并且各向异性扩散倾向于产生多个虚假边缘。斑点可以通过简单的算法(如本文提出的算法)轻松去除。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验