Hill T L
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 1988 May;85(9):2879-83. doi: 10.1073/pnas.85.9.2879.
Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.
本文讨论了三个主题。一种具有一个或多个吸收态的离散状态、连续时间随机游走可以通过一种可能是新的方法进行研究:一些平均性质,包括吸收的平均时间,可以从一个修改后的图(图形)中找到,在该图中每个吸收态被一个回到起始状态的单向循环所取代。第二个问题是在具有循环的图(图形)上的随机游走。该游走在第一个循环完成时终止。这个游走可以被一个在具有吸收的修改后的图上的等效游走所取代。这个吸收图又可以被另一个具有回到起始状态的单向循环的修改后的图所取代,就像在第一个问题中一样。第三个问题在生物物理学中很重要,涉及在具有循环的图上的长时间连续游走。这个图可以(分两步)变换为一个仅具有单向循环的修改后的、更详细的图。因此,原始图的单向循环通量可以从修改后的图的状态概率中找到。这些概率本身可以通过简单的矩阵求逆得到(这些概率由线性代数稳态方程确定)。因此,现在有了一种简单的方法来精确地找到单向循环通量(以前对于任何复杂度的图,需要蒙特卡罗模拟来找到这些通量,并且存在伴随的波动)。上述过程的一个附带好处是,它为单向循环通量关系(J_{n\pm}=\Pi_{n\pm}\sigma_n/\sigma)提供了一个简单的证明,其中(n)是原始图的任何循环。