Suppr超能文献

小分子天然产物检测和分离的化学标记策略。

Chemical labeling strategies for small molecule natural product detection and isolation.

机构信息

Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.

出版信息

Nat Prod Rep. 2021 Sep 23;38(9):1684-1705. doi: 10.1039/d0np00034e.

Abstract

Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.

摘要

涵盖

截至 2020 年。人们普遍认为,小分子天然产物 (NPs) 的进化是为了执行特定的生态功能,而这些经过微调的分子有时可以被用于治疗人类疾病。不幸的是,对于天然产物化学家来说,NPs 并没有进化出 HPLC-MS 分析所需的有利物理化学性质。这种被称为衍生化的过程,即用衍生化试剂 (DA) 为复杂混合物中的 NP 添加非天然部分,就是源于这种糟糕的情况。在这里,NPs 摆脱了自然功能的限制,并获得了通常具有一定化学选择性的额外结构特征,这使得 HPLC-MS 分析更具信息量。已经开发出了选择性标记胺、羧酸、醇、酚、硫醇、酮和醛、末端炔烃、亲电试剂、共轭烯烃和异氰化物的 DA,并将在这里详细讨论。尽管通常用于靶向代谢组学,但化学标记策略已有效地应用于未表征的 NP 提取物,并可能在未来在某些类 NP 的检测和分离中发挥越来越重要的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验