文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 CT 图像进行冠状病毒病(COVID-19)筛查的深度学习算法。

A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).

机构信息

Department of Biochemistry and Molecular Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.

Department of Hepatobiliary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.

出版信息

Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.


DOI:10.1007/s00330-021-07715-1
PMID:33629156
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7904034/
Abstract

OBJECTIVE: The outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has caused more than 26 million cases of Corona virus disease (COVID-19) in the world so far. To control the spread of the disease, screening large numbers of suspected cases for appropriate quarantine and treatment are a priority. Pathogenic laboratory testing is typically the gold standard, but it bears the burden of significant false negativity, adding to the urgent need of alternative diagnostic methods to combat the disease. Based on COVID-19 radiographic changes in CT images, this study hypothesized that artificial intelligence methods might be able to extract specific graphical features of COVID-19 and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time for disease control. METHODS: We collected 1065 CT images of pathogen-confirmed COVID-19 cases along with those previously diagnosed with typical viral pneumonia. We modified the inception transfer-learning model to establish the algorithm, followed by internal and external validation. RESULTS: The internal validation achieved a total accuracy of 89.5% with a specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with a specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images, the first two nucleic acid test results were negative, and 46 were predicted as COVID-19 positive by the algorithm, with an accuracy of 85.2%. CONCLUSION: These results demonstrate the proof-of-principle for using artificial intelligence to extract radiological features for timely and accurate COVID-19 diagnosis. KEY POINTS: • The study evaluated the diagnostic performance of a deep learning algorithm using CT images to screen for COVID-19 during the influenza season. • As a screening method, our model achieved a relatively high sensitivity on internal and external CT image datasets. • The model was used to distinguish between COVID-19 and other typical viral pneumonia, both of which have quite similar radiologic characteristics.

摘要

目的:截至目前,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的爆发已在全球导致超过 2600 万例冠状病毒病(COVID-19)病例。为控制疾病传播,对大量疑似病例进行适当的隔离和治疗是当务之急。病原体实验室检测通常是金标准,但存在显著假阴性的负担,这增加了对抗疾病的替代诊断方法的迫切需求。基于 COVID-19 在 CT 图像中的放射学变化,本研究假设人工智能方法可能能够提取 COVID-19 的特定图形特征,并在病原体检测之前提供临床诊断,从而为疾病控制节省关键时间。

方法:我们收集了 1065 例经病原体证实的 COVID-19 病例以及先前诊断为典型病毒性肺炎的 CT 图像。我们修改了 inception 迁移学习模型来建立算法,然后进行内部和外部验证。

结果:内部验证的总准确率为 89.5%,特异性为 0.88,敏感性为 0.87。外部测试数据集的总准确率为 79.3%,特异性为 0.83,敏感性为 0.67。此外,在 54 例 COVID-19 图像中,前两次核酸检测结果均为阴性,而算法预测为 COVID-19 阳性的有 46 例,准确率为 85.2%。

结论:这些结果证明了使用人工智能提取放射学特征进行 COVID-19 及时准确诊断的原理验证。

关键点:• 本研究评估了一种深度学习算法使用 CT 图像在流感季节筛选 COVID-19 的诊断性能。• 作为一种筛选方法,我们的模型在内部和外部 CT 图像数据集上均实现了较高的敏感性。• 该模型用于区分 COVID-19 和其他具有相似放射学特征的典型病毒性肺炎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/4ce4d6f3e761/330_2021_7715_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/41be4925cfc0/330_2021_7715_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/86814288a5a9/330_2021_7715_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/ca598ca01a30/330_2021_7715_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/0f7abcf3b7b1/330_2021_7715_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/4ce4d6f3e761/330_2021_7715_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/41be4925cfc0/330_2021_7715_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/86814288a5a9/330_2021_7715_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/ca598ca01a30/330_2021_7715_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/0f7abcf3b7b1/330_2021_7715_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aab/8270861/4ce4d6f3e761/330_2021_7715_Fig5_HTML.jpg

相似文献

[1]
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).

Eur Radiol. 2021-8

[2]
Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections.

J Xray Sci Technol. 2021

[3]
Thoracic imaging tests for the diagnosis of COVID-19.

Cochrane Database Syst Rev. 2020-9-30

[4]
Contribution of artificial intelligence applications developed with the deep learning method to the diagnosis of COVID-19 pneumonia on computed tomography.

Tuberk Toraks. 2021-12

[5]
COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images.

Interdiscip Sci. 2020-9-21

[6]
AI support for accurate and fast radiological diagnosis of COVID-19: an international multicenter, multivendor CT study.

Eur Radiol. 2023-6

[7]
An original deep learning model using limited data for COVID-19 discrimination: A multicenter study.

Med Phys. 2022-6

[8]
3D CT-Inclusive Deep-Learning Model to Predict Mortality, ICU Admittance, and Intubation in COVID-19 Patients.

J Digit Imaging. 2023-4

[9]
An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model.

Acta Trop. 2024-9

[10]
Deep-learning algorithms for the interpretation of chest radiographs to aid in the triage of COVID-19 patients: A multicenter retrospective study.

PLoS One. 2020-11-24

引用本文的文献

[1]
Artificial intelligence algorithms based approach in evaluating COVID-19 patients and management.

J Crit Care Med (Targu Mures). 2025-7-31

[2]
Deep Learning Network Selection and Optimized Information Fusion for Enhanced COVID-19 Detection: A Literature Review.

Diagnostics (Basel). 2025-7-21

[3]
A novel normalization algorithm to facilitate pre-assessment of Covid-19 disease by improving accuracy of CNN and its FPGA implementation.

Evol Syst (Berl). 2022-2-1

[4]
A cancer diagnosis transformer model based on medical IoT data for clinical measurements in predictive care systems.

Bioimpacts. 2024-12-4

[5]
A comparative analysis of the binary and multiclass classified chest X-ray images of pneumonia and COVID-19 with ML and DL models.

Open Med (Wars). 2025-2-4

[6]
Role of digital technology in epidemic control: a scoping review on COVID-19 and Ebola.

BMJ Open. 2025-1-23

[7]
Deep learning models for CT image classification: a comprehensive literature review.

Quant Imaging Med Surg. 2025-1-2

[8]
The role of artificial intelligence in pandemic responses: from epidemiological modeling to vaccine development.

Mol Biomed. 2025-1-3

[9]
How AI Could Help Us in the Epidemiology and Diagnosis of Acute Respiratory Infections?

Pathogens. 2024-10-29

[10]
Efficient classification of COVID-19 CT scans by using q-transform model for feature extraction.

PeerJ Comput Sci. 2021-6-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索