Gawande Mayur Suresh, Zade Nikita, Kumar Praveen, Gundewar Swapnil, Weerarathna Induni Nayodhara, Verma Prateek
Department of Artificial Intelligence and Data Science, Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Sawangi (Meghe), Wardha, Maharashtra, 442001, India.
Department of Computer Science and Medical Engineering, Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Sawangi (Meghe), Wardha, Maharashtra, 442001, India.
Mol Biomed. 2025 Jan 3;6(1):1. doi: 10.1186/s43556-024-00238-3.
Integrating Artificial Intelligence (AI) across numerous disciplines has transformed the worldwide landscape of pandemic response. This review investigates the multidimensional role of AI in the pandemic, which arises as a global health crisis, and its role in preparedness and responses, ranging from enhanced epidemiological modelling to the acceleration of vaccine development. The confluence of AI technologies has guided us in a new era of data-driven decision-making, revolutionizing our ability to anticipate, mitigate, and treat infectious illnesses. The review begins by discussing the impact of a pandemic on emerging countries worldwide, elaborating on the critical significance of AI in epidemiological modelling, bringing data-driven decision-making, and enabling forecasting, mitigation and response to the pandemic. In epidemiology, AI-driven epidemiological models like SIR (Susceptible-Infectious-Recovered) and SIS (Susceptible-Infectious-Susceptible) are applied to predict the spread of disease, preventing outbreaks and optimising vaccine distribution. The review also demonstrates how Machine Learning (ML) algorithms and predictive analytics improve our knowledge of disease propagation patterns. The collaborative aspect of AI in vaccine discovery and clinical trials of various vaccines is emphasised, focusing on constructing AI-powered surveillance networks. Conclusively, the review presents a comprehensive assessment of how AI impacts epidemiological modelling, builds AI-enabled dynamic models by collaborating ML and Deep Learning (DL) techniques, and develops and implements vaccines and clinical trials. The review also focuses on screening, forecasting, contact tracing and monitoring the virus-causing pandemic. It advocates for sustained research, real-world implications, ethical application and strategic integration of AI technologies to strengthen our collective ability to face and alleviate the effects of global health issues.
将人工智能(AI)整合到众多学科中,已经改变了全球应对疫情的格局。本综述探讨了人工智能在这场作为全球健康危机出现的疫情中的多维度作用,以及它在防范和应对方面的作用,从加强流行病学建模到加速疫苗研发。人工智能技术的融合引领我们进入了一个数据驱动决策的新时代,彻底改变了我们预测、减轻和治疗传染病的能力。综述首先讨论了疫情对全球新兴国家的影响,阐述了人工智能在流行病学建模中的关键意义,带来数据驱动的决策,并实现对疫情的预测、缓解和应对。在流行病学中,像SIR(易感-感染-康复)和SIS(易感-感染-易感)这样的人工智能驱动的流行病学模型被用于预测疾病传播、预防疫情爆发和优化疫苗分配。综述还展示了机器学习(ML)算法和预测分析如何提高我们对疾病传播模式的认识。强调了人工智能在各种疫苗的发现和临床试验中的协作方面,重点是构建人工智能驱动的监测网络。最后,综述全面评估了人工智能如何影响流行病学建模,通过结合机器学习和深度学习(DL)技术构建支持人工智能的动态模型,以及开发和实施疫苗及临床试验。综述还侧重于对引起疫情的病毒进行筛查、预测、接触者追踪和监测。它主张持续开展研究、关注实际影响、进行道德应用以及对人工智能技术进行战略整合,以增强我们共同应对和减轻全球健康问题影响的能力。
Int J Biol Macromol. 2024-12
Artif Intell Med. 2022-6
J Microbiol Methods. 2024-9
Diabetes Metab Syndr. 2020
Int J Health Plann Manage. 2025-3
Front Artif Intell. 2025-7-30
Front Public Health. 2025-7-30
Emerg Infect Dis. 2025-8
Front Artif Intell. 2025-7-2
Bioengineering (Basel). 2025-5-23
Front Digit Health. 2025-6-4
Healthcare (Basel). 2025-5-29
Vaccines (Basel). 2025-4-25
J Microbiol Methods. 2024-9
AMIA Jt Summits Transl Sci Proc. 2024-5-31
Int J Numer Method Biomed Eng. 2024-2
Medicine (Baltimore). 2023-12-15
IEEE Trans Netw Sci Eng. 2020-9-18
Ir J Med Sci. 2024-6