Ramberger Benjamin, Kresse Georg
University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Kolingasse 14-16, 1090 Vienna, Austria.
Phys Chem Chem Phys. 2021 Mar 11;23(9):5254-5260. doi: 10.1039/d0cp06607a.
We investigated the electronic and structural properties of the infinite linear carbon chain (carbyne) using density functional theory (DFT) and the random phase approximation (RPA) to the correlation energy. The studies are performed in vacuo and for carbyne inside a carbon nano tube (CNT). In the vacuum, semi-local DFT and RPA predict bond length alternations of about 0.04 Å and 0.13 Å, respectively. The frequency of the highest optical mode at the Γ point is 1219 cm-1 and about 2000 cm-1 for DFT and the RPA. Agreement of the RPA to previous high level quantum chemistry and diffusion Monte-Carlo results is excellent. For the RPA we calculate the phonon-dispersion in the full Brillouine zone and find marked quantitative differences to DFT calculations not only at the Γ point but also throughout the entire Brillouine zone. To model carbyne inside a carbon nanotube, we considered a (10,0) CNT. Here the DFT calculations are even qualitatively sensitive to the k-points sampling. At the limes of a very dense k-points sampling, semi-local DFT predicts no bond length alternation (BLA), whereas in the RPA a sizeable BLA of 0.09 Å prevails. The reduced BLA leads to a significant red shift of the vibrational frequencies of about 350 cm-1, so that they are in good agreement with experimental estimates. Overall, the good agreement between the RPA and previously reported results from correlated wavefunction methods and experimental Raman data suggests that the RPA provides reliable results at moderate computational costs. It hence presents a useful addition to the repertoire of correlated wavefunction methods and its accuracy clearly prevails for low dimensional systems, where semi-local density functionals struggle to yield even qualitatively correct results.
我们使用密度泛函理论(DFT)和关联能的随机相位近似(RPA)研究了无限线性碳链(卡宾)的电子和结构性质。研究在真空中以及碳纳米管(CNT)内部的卡宾上进行。在真空中,半局域DFT和RPA预测的键长交替分别约为0.04 Å和0.13 Å。对于DFT和RPA,Γ点处最高光学模式的频率分别为1219 cm⁻¹和约2000 cm⁻¹。RPA与先前的高水平量子化学和扩散蒙特卡罗结果的一致性非常好。对于RPA,我们计算了整个布里渊区的声子色散,发现不仅在Γ点,而且在整个布里渊区,与DFT计算都存在明显的定量差异。为了模拟碳纳米管内部的卡宾,我们考虑了一个(10,0)碳纳米管。在这里,DFT计算甚至对k点采样在定性上都很敏感。在非常密集的k点采样极限下,半局域DFT预测没有键长交替(BLA),而在RPA中,0.09 Å的可观BLA仍然存在。BLA的减小导致振动频率显著红移约350 cm⁻¹,因此与实验估计值非常吻合。总体而言,RPA与先前相关波函数方法报告的结果以及实验拉曼数据之间的良好一致性表明,RPA以适度的计算成本提供了可靠的结果。因此,它是相关波函数方法库中的一个有用补充,并且在低维系统中其准确性明显占优,而半局域密度泛函在低维系统中甚至难以给出定性正确的结果。