Chaturvedi Ashwin, Williams Caroline K, Devi Nilakshi, Jiang Jianbing Jimmy
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States.
Inorg Chem. 2021 Mar 15;60(6):3843-3850. doi: 10.1021/acs.inorgchem.0c03612. Epub 2021 Feb 25.
Electrochemical carbon dioxide (CO) reduction is a sustainable approach for transforming atmospheric CO into chemical feedstocks and fuels. To overcome the kinetic barriers of electrocatalytic CO reduction, catalysts with high selectivity, activity, and stability are needed. Here, we report an iron porphyrin complex, , with a poly(ethylene glycol) unit in the second coordination sphere, as a highly selective and active electrocatalyst for the electrochemical reduction of CO to carbon monoxide (CO). Controlled-potential electrolysis using showed a Faradaic efficiency of 98% and a current density of -7.8 mA/cm at -2.2 V versus Fc/Fc in acetonitrile using water as the proton source. The maximum turnover frequency was calculated to be 1.4 × 10 s using foot-of-the-wave analysis. Distinct from most other catalysts, the kinetic isotope effect (KIE) study revealed that the protonation step of the Fe-CO adduct is not involved in the rate-limiting step. This model shows that the PEG unit as the secondary coordination sphere enhances the catalytic kinetics and thus is an effective design for electrocatalytic CO reduction.
电化学二氧化碳(CO₂)还原是一种将大气中的CO₂转化为化学原料和燃料的可持续方法。为了克服电催化CO₂还原的动力学障碍,需要具有高选择性、活性和稳定性的催化剂。在此,我们报道了一种在第二配位层带有聚乙二醇单元的铁卟啉配合物,作为将CO₂电化学还原为一氧化碳(CO)的高选择性和活性电催化剂。在乙腈中以水作为质子源,相对于Fc⁺/Fc,使用该配合物进行控制电位电解,在-2.2 V时显示出98%的法拉第效率和-7.8 mA/cm²的电流密度。使用波底分析计算得出最大周转频率为1.4×10⁻³ s⁻¹。与大多数其他催化剂不同,动力学同位素效应(KIE)研究表明,Fe-CO加合物的质子化步骤不参与速率限制步骤。该模型表明,作为第二配位层的PEG单元增强了催化动力学,因此是电催化CO₂还原的有效设计。