Department of Chemistry, University of California, Berkeley, California 94720, United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Inorg Chem. 2022 May 9;61(18):6919-6933. doi: 10.1021/acs.inorgchem.2c00279. Epub 2022 Apr 22.
[Fe(tpyPY2Me)] ([Fe]) is a homogeneous electrocatalyst for converting CO into CO featuring low overpotentials of <100 mV, near-unity selectivity, and high activity with turnover frequencies faster than 100 000 s. To identify the origins of its exceptional performance and inform future catalyst design, we report a combined computational and experimental study that establishes two distinct mechanistic pathways for electrochemical CO reduction catalyzed by [Fe] as a function of applied overpotential. Electrochemical data shows the formation of two catalytic regimes at low (η of 160 mV) and high (η of 590 mV) overpotential plateaus. We propose that at low overpotentials [Fe] undergoes a two-electron reduction, two-proton-transfer mechanism (electrochemical-electrochemical-chemical-chemical, EECC), where turnover occurs through the dicationic iron complex, [Fe]. Computational analysis supports the importance of the singlet ground-state electronic structure for CO binding and that the rate-limiting step is the second protonation in this low-overpotential regime. When more negative potentials are applied, an additional electron-transfer event occurs through either a stepwise or proton-coupled electron-transfer (PCET) pathway, enabling catalytic turnover from the monocationic iron complex ([Fe]) via an electrochemical-chemical-electrochemical-chemical (ECEC) mechanism. Comparison of experimental kinetic data obtained from variable controlled potential electrolysis (CPE) experiments with direct product detection with calculated rates obtained from the energetic span model supports the PCET pathway as the most likely mechanism. Moreover, we build upon this mechanistic understanding to propose the design of an improved ligand framework that is predicted to stabilize the key transition states identified in our study and explore their electronic structures using an energy decomposition analysis. Taken together, this work highlights the value of synergistic computational/experimental approaches to decipher mechanisms of new electrocatalysts and direct the rational design of improved platforms.
[Fe(tpyPY2Me)] ([Fe]) 是一种将 CO 转化为 CO 的均相电催化剂,其过电位低(<100 mV),选择性接近 100%,活性高,周转频率超过 100,000 s。为了确定其优异性能的起源并为未来的催化剂设计提供信息,我们报告了一项组合的计算和实验研究,该研究确定了 [Fe] 电化学 CO 还原作为施加过电位函数的两种不同的催化途径。电化学数据显示,在低(η 为 160 mV)和高(η 为 590 mV)过电位平台下,形成了两种催化区。我们提出,在低过电位下,[Fe]经历了两步还原、两步质子转移机制(电化学-电化学-化学-化学,EECC),通过二价铁络合物[Fe]发生周转。计算分析支持单重态基态电子结构对 CO 结合的重要性,并且在这个低过电位区域,限速步骤是第二步质子化。当施加更负的电位时,通过分步或质子耦合电子转移(PCET)途径发生额外的电子转移事件,通过电化学-化学-电化学-化学(ECEC)机制使单阳离子铁络合物([Fe])能够进行催化周转。通过与直接产物检测的可变控制电位电解(CPE)实验获得的实验动力学数据与从能量跨度模型获得的计算速率进行比较,支持 PCET 途径作为最可能的机制。此外,我们在这一机制理解的基础上,提出了设计一种改进的配体框架的建议,该框架预计可以稳定我们研究中确定的关键过渡态,并使用能量分解分析探索它们的电子结构。总的来说,这项工作强调了协同计算/实验方法在破译新型电催化剂的机制和指导改进平台的合理设计方面的价值。