School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China.
Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France.
Chem Soc Rev. 2021 Apr 26;50(8):5062-5085. doi: 10.1039/d0cs01392g.
Metal-catalyzed activations of inert sp2C-H and sp3C-H bonds have recently brought about a revolution in the synthesis of useful molecules and molecular materials. Among them, the catalytic silylation of sp3C-H bonds has been developed due to the interest in the formed sp3C-SiR3 silanes, a stable organometallic species, for carrying out further functionalizations that cannot be directly achieved using sp3C-H bonds. Besides many examples of sp2C-H bond catalytic silylations, metal-catalyzed silylations of sp3C-H bonds have been mostly discovered during the last decade in spite of the high reactivity of the sp3C-SiR3 group. This review will present all the methods of metal-catalyzed silylations of sp3C-H bonds into sp3C-SiR3 functions, discuss the catalytic mechanisms according to various metal-catalysts, and illustrate their applications in synthesis. The review describes successively the intermolecular sp3C-H bond silylations directed first by N-containing heterocycles with silanes using various Ru, Rh, and Ir catalysts and then directed by an amide type function using a Pd(ii) catalyst and R3Si-SiR3 reagent. The catalytic intramolecular silylations of sp3C-H bonds can be performed after the catalytic formation of CH-OSiR2H or CH-N(R)SiR2H groups from alcohols, ketones, esters, or amine NH bonds by catalytic hydrosilylation with R2SiH2. Both catalytic processes can be performed using Ir(i) and Rh(i) catalysts with an alkene to capture the formed H2. This reaction with Rh(i) and Ir(i) catalysts can be applied to the formation of 5-membered cyclic silanes from aryl silanes and from alkyl silanes arising from hydrosilylated terminal C[double bond, length as m-dash]C bonds of alkenes. Oxidation of the cyclic silane derivatives easily leads to 1,3- and 1,4-diols, from alcohol or ketone precursors and to 1,2-amino alcohols from amines. Several methods show how to transform various heteroatom-methyl groups X-CH3: B-CH3, O-CH3, Si-CH3, N-CH3, Ge-CH3 and S-CH3 into their reactive functionalized X-CH2SiR3 group, using various Ru(0), Ir(i), pincer-Ru(ii), or Y catalysts. Examples are shown of catalytic transformations of the allylic moiety CH3-C(R)[double bond, length as m-dash]CH2 into its silylated CH2[double bond, length as m-dash]C(R)-CH2SiR'3 form via (i) Pd(ii) allyl activation, (ii) silyl radical generation with photocatalyst and (iii) dual Ir(i) and Fe(ii) catalysts for hydrosilylation of alkanes, via alkene formation, isomerization and hydrosilylation. Finally, a Ru(ii)-catalyzed sp3C-H silylation of a methyl group of arylphosphine, directed by a P(iii) atom, will be presented.
金属催化的惰性 sp2C-H 和 sp3C-H 键的活化作用最近在有用分子和分子材料的合成方面带来了一场革命。其中,由于对形成的 sp3C-SiR3 硅烷的兴趣,sp3C-H 键的催化硅烷化得到了发展,sp3C-SiR3 硅烷是一种稳定的有机金属物种,可用于进行无法直接通过 sp3C-H 键实现的进一步官能化。除了许多 sp2C-H 键催化硅烷化的例子外,尽管 sp3C-SiR3 基团具有很高的反应性,但金属催化的 sp3C-H 键硅烷化主要是在过去十年中发现的。本综述将介绍所有金属催化的 sp3C-H 键硅烷化为 sp3C-SiR3 官能团的方法,根据各种金属催化剂讨论催化机制,并说明它们在合成中的应用。本综述依次描述了首先由含氮杂环与硅烷一起通过各种 Ru、Rh 和 Ir 催化剂指导的 sp3C-H 键的分子间硅烷化,然后由酰胺型官能团通过 Pd(ii)催化剂和 R3Si-SiR3 试剂指导的 sp3C-H 键的分子内硅烷化。通过催化氢化反应,sp3C-H 键的催化内硅烷化可以在醇、酮、酯或胺 NH 键形成 CH-OSiR2H 或 CH-N(R)SiR2H 基团后进行,使用 R2SiH2 作为催化剂。这两种催化过程都可以使用 Ir(i)和 Rh(i)催化剂与烯烃一起进行,以捕获形成的 H2。该反应使用 Rh(i)和 Ir(i)催化剂可以应用于芳基硅烷和通过末端 C[双键,长度为 m-dash]C 键的烯烃的硅氢化形成的 5 元环硅烷。环状硅烷衍生物的氧化容易导致 1,3-和 1,4-二醇,从醇或酮前体和 1,2-氨基醇从胺。几种方法表明如何将各种杂原子-甲基基团 X-CH3:B-CH3、O-CH3、Si-CH3、N-CH3、Ge-CH3 和 S-CH3 转化为其反应性官能化的 X-CH2SiR3 基团,使用各种 Ru(0)、Ir(i)、钳式 Ru(ii)或 Y 催化剂。显示了通过(i)Pd(ii)烯丙基活化、(ii)光催化剂引发的硅基自由基生成和(iii)Ir(i)和 Fe(ii)双重催化剂用于通过烯烃形成、异构化和硅氢化将烯丙基部分 CH3-C(R)[双键,长度为 m-dash]CH2 转化为其硅烷化的 CH2[双键,长度为 m-dash]C(R)-CH2SiR'3 形式的催化转化的例子。最后,将介绍 Ru(ii)催化的芳基膦中 sp3C-H 硅烷化的芳基膦中 sp3C-H 硅烷化,由 P(iii)原子引导。