Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland.
Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
Angew Chem Int Ed Engl. 2021 Apr 26;60(18):10001-10006. doi: 10.1002/anie.202100863. Epub 2021 Mar 22.
Gas-processing metalloenzymes are of interest to future bio- and bioinspired technologies. Of particular importance are hydrogenases and nitrogenases, which both produce molecular hydrogen (H ) from proton (H ) reduction. Herein, we report on the use of rotating ring-disk electrochemistry (RRDE) and mass spectrometry (MS) to follow the production of H and isotopes produced from deuteron (D ) reduction (HD and D ) using the [FeFe]-hydrogenase from Clostridium pasteurianum, a model hydrogen-evolving metalloenzyme. This facilitates enzymology studies independent of non-innocent chemical reductants. We anticipate that these approaches will be of value in resolving the catalytic mechanisms of H -producing metalloenzymes and the design of bioinspired catalysts for H production and N fixation.
用于未来生物和仿生技术的气体处理金属酶引起了人们的兴趣。特别重要的是氢化酶和氮酶,它们都可以将质子(H+)还原为分子氢(H2)。在此,我们报告了使用旋转环盘电化学(RRDE)和质谱(MS)来跟踪使用来自巴氏梭菌的[FeFe]-氢化酶(一种模型产氢金属酶)从氘(D)还原产生的 H 和同位素(HD 和 D)的生产。这使得酶学研究可以独立于非无辜的化学还原剂进行。我们预计这些方法将有助于解决产 H 金属酶的催化机制以及用于 H 生产和 N 固定的仿生催化剂的设计。