Suppr超能文献

具有无界时变延迟的分数阶竞争神经网络的多重稳定性与镇定

Multistability and Stabilization of Fractional-Order Competitive Neural Networks With Unbounded Time-Varying Delays.

作者信息

Zhang Fanghai, Zeng Zhigang

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4515-4526. doi: 10.1109/TNNLS.2021.3057861. Epub 2022 Aug 31.

Abstract

This article investigates the multistability and stabilization of fractional-order competitive neural networks (FOCNNs) with unbounded time-varying delays. By utilizing the monotone operator, several sufficient conditions of the coexistence of equilibrium points (EPs) are obtained for FOCNNs with concave-convex activation functions. And then, the multiple μ -stability of delayed FOCNNs is derived by the analytical method. Meanwhile, several comparisons with existing work are shown, which implies that the derived results cover the inverse-power stability and Mittag-Leffler stability as special cases. Moreover, the criteria on the stabilization of FOCNNs with uncertainty are established by designing a controller. Compared with the results of fractional-order neural networks, the obtained results in this article enrich and improve the previous results. Finally, three numerical examples are provided to show the effectiveness of the presented results.

摘要

本文研究了具有无界时变延迟的分数阶竞争神经网络(FOCNNs)的多重稳定性和镇定问题。通过利用单调算子,对于具有凹凸激活函数的FOCNNs,获得了平衡点共存的几个充分条件。然后,通过解析方法推导了时滞FOCNNs的多重μ稳定性。同时,给出了与现有工作的若干比较,这意味着所推导的结果涵盖了作为特殊情况的逆幂稳定性和米塔格 - 莱夫勒稳定性。此外,通过设计控制器建立了具有不确定性的FOCNNs的镇定准则。与分数阶神经网络的结果相比,本文得到的结果丰富和改进了先前的结果。最后,提供了三个数值例子以说明所提出结果的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验