Department of Biochemistry and Molecular Biology, School of Dental Medicine,Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
Department of Biochemistry and Molecular Biology, School of Dental Medicine,Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
Acta Biomater. 2021 Apr 15;125:333-344. doi: 10.1016/j.actbio.2021.02.024. Epub 2021 Feb 22.
The phase transformation from soluble calcium phosphates to less-soluble hydroxyapatite (HAP) is a thermodynamically natural route. This process is irreversible, and effective use of poorly reactive HAP to repair teeth that have no cellular metabolism remains challenging. However, this thermodynamically controlled transformation may apparently be reversed through the fast nucleation and growth of metastable phases, leading to a reactive HAP surface. Here, the assembled HAP-nanorod phase is demonstrated to change into the metastable octacalcium phosphate (OCP) phase in a calcium phosphate solution containing 0.8 ppm fluoride. Grown OCPs display parallel surface streaks and their 11¯0 and 00l (l: odd) electron-diffraction spots are often not visible. The streaked, elongated OCP gradually grows into large plates with flat surfaces that exhibit an intense11¯0 spot. Crystal-structure models reveal that the unique epitaxial overgrowth of OCP on HAP occurs since both materials share coherent {100} faces, resulting in the distinctive disappearance of 11¯0 and 00l OCP spots. A polysynthetic twin model that reliably explains this disappearance is proposed for the growth of OCP. This apparent reverse phase transformation produces hybrid calcium phosphates consisting of HAP cores and highly reactive outer OCP layers that are promising for the repair of dentin caries. STATEMENT OF SIGNIFICANCE: This paper demonstrates important and interesting finding regarding formation of calcium phosphates in relation to their crystal structures. We first show that hydroxyapatite (HAP), the major constituent of human teeth and bone, can reversely change to its precursor, octacalcium phosphate (OCP), contrary to thermodynamic-stability rule. This apparent reverse phase transformation occurs through sharing the coherent {100} faces of both materials under controlled fluoride concentration. Nanoscale similarity of two crystal surfaces enables structurally shared epitaxial overgrowth of OCP on HAP aided by faster growth rate of OCP than that of HAP. This reaction produces hybrid crystal consisting of outer OCP and core HAP, that has not been known before and is able to be applied to dentin caries repair.
从可溶的磷酸钙转化为较少可溶性的羟基磷灰石(HAP)是一种热力学上自然的途径。这个过程是不可逆的,有效地利用反应性较差的 HAP 来修复没有细胞代谢的牙齿仍然具有挑战性。然而,通过快速成核和亚稳相的生长,这种热力学控制的转化显然可以被逆转,从而产生反应性的 HAP 表面。在这里,组装的 HAP-纳米棒相被证明在含有 0.8ppm 氟化物的磷酸钙溶液中转化为亚稳的八钙磷酸盐(OCP)相。生长的 OCP 显示出平行的表面条纹,其 11¯0 和 00l(l:奇数)电子衍射点通常不可见。条纹状、拉长的 OCP 逐渐生长成具有平坦表面的大平板,表现出强烈的 11¯0 点。晶体结构模型表明,由于两种材料都具有共格的{100}面,因此 OCP 对 HAP 的独特外延生长发生,导致 OCP 的 11¯0 和 00l 点明显消失。提出了一个可靠解释这种消失的多合成孪晶模型,用于 OCP 的生长。这种明显的反向相变产生了由 HAP 核和高反应性外 OCP 层组成的混合钙磷酸盐,这对于牙本质龋的修复具有很大的应用前景。意义声明:本文展示了关于钙磷酸盐形成与其晶体结构的重要而有趣的发现。我们首先表明,人类牙齿和骨骼的主要成分羟基磷灰石(HAP)可以与其前体八钙磷酸盐(OCP)相反,违反热力学稳定性规则。这种明显的反向相变是通过在受控氟浓度下共享两种材料的共格{100}面发生的。两个晶体表面的纳米级相似性使得 OCP 在 HAP 上的结构共享外延生长成为可能,这得益于 OCP 的生长速度比 HAP 快。这种反应产生了由外 OCP 和核 HAP 组成的混合晶体,这是以前未知的,能够应用于牙本质龋的修复。