Suppr超能文献

Controlled di-lithiation enabled synthesis of phosphine-sulfonamide ligands and implications in ethylene oligomerization.

作者信息

Mote Nilesh R, Gaikwad Shahaji R, Khopade Kishor V, Gonnade Rajesh G, Chikkali Samir H

机构信息

Polyolefin Laboratory, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.

出版信息

Dalton Trans. 2021 Mar 16;50(10):3717-3723. doi: 10.1039/d1dt00093d.

Abstract

Catalyst design for ethylene oligomerization has attracted significant interest. Herein, we report the synthesis of phosphine-sulfonamide-derived palladium complexes and examine their performance in ethylene oligomerization. Arresting a dilithiation intermediate of N-(2-bromophenyl)-4-methylbenzenesulfonamide (1) at -84 °C selectively produced N-(2-(bis(2-methoxyphenyl)phosphanyl)phenyl)-4-methylbenzenesulfonamide (L1A). However, the same reaction at -41 °C delivered a different ligand; 2-(bis(2-methoxyphenyl)phosphanyl)-4-methyl-N-phenylbenzenesulfonamide (L2A). The generality of our strategy has been demonstrated by preparing N-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (L1B) and 2-(diphenylphosphanyl)-4-methyl-N-phenylbenzenesulfonamide (L2B). Subsequently, L1A and L1B were treated with a palladium precursor to yield 5-membered complexes C1 and C2, respectively. In contrast, L2A upon treatment with palladium produced a 6-membered metal complex C3. Thus, a small library of 7 palladium complexes (C1-C7) were synthesized by varying the donor moiety (pyridine, DMSO, and acetonitrile). The identity of palladium complexes was unambiguously ascertained using a combination of spectroscopic and analytical methods, including single-crystal X-ray diffraction. The performance of the complexes C1-C7 was investigated in ethylene oligomerization and almost all of them were found to be active. The resultant ethylene oligomers were characterized using 1H and 13C NMR, MALDI-ToF-MS, and GPC. Detailed screening of reaction parameters revealed 100 °C and 40 bars ethylene to be optimal conditions. Complex C5 outperformed other complexes and produced ethylene oligomers with a molecular weight of 1000-1900 g mol-1.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验