Suppr超能文献

一种用于癌症研究中互斥性分析的贪婪算法。

A greedy approach for mutual exclusivity analysis in cancer study.

机构信息

School of Mathematical Sciences, Anhui University, Hefei, Anhui, China.

Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

Biostatistics. 2022 Jul 18;23(3):910-925. doi: 10.1093/biostatistics/kxab004.

Abstract

The main challenge in cancer genomics is to distinguish the driver genes from passenger or neutral genes. Cancer genomes exhibit extensive mutational heterogeneity that no two genomes contain exactly the same somatic mutations. Such mutual exclusivity (ME) of mutations has been observed in cancer data and is associated with functional pathways. Analysis of ME patterns may provide useful clues to driver genes or pathways and may suggest novel understandings of cancer progression. In this article, we consider a probabilistic, generative model of ME, and propose a powerful and greedy algorithm to select the mutual exclusivity gene sets. The greedy method includes a pre-selection procedure and a stepwise forward algorithm which can significantly reduce computation time. Power calculations suggest that the new method is efficient and powerful for one ME set or multiple ME sets with overlapping genes. We illustrate this approach by analysis of the whole-exome sequencing data of cancer types from TCGA.

摘要

癌症基因组学的主要挑战是区分驱动基因和乘客基因或中性基因。癌症基因组表现出广泛的突变异质性,没有两个基因组包含完全相同的体细胞突变。这种突变的互斥性(ME)在癌症数据中已经被观察到,并与功能途径相关。分析 ME 模式可能为驱动基因或途径提供有用的线索,并可能为癌症进展提供新的理解。在本文中,我们考虑了 ME 的概率生成模型,并提出了一种强大的贪婪算法来选择互斥性基因集。贪婪方法包括预选程序和逐步向前算法,可以显著减少计算时间。功效计算表明,新方法对于一个 ME 集或多个具有重叠基因的 ME 集都是高效和强大的。我们通过分析 TCGA 癌症类型的全外显子测序数据来说明这种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验