Suppr超能文献

MEScan:一种强大的基因组规模癌症突变互斥性分析的统计框架。

MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations.

机构信息

Adcolony Inc., Bellevue, WA 98004, USA.

Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.

出版信息

Bioinformatics. 2021 Jun 9;37(9):1189-1197. doi: 10.1093/bioinformatics/btaa957.

Abstract

MOTIVATION

Cancer somatic driver mutations associated with genes within a pathway often show a mutually exclusive pattern across a cohort of patients. This mutually exclusive mutational signal has been frequently used to distinguish driver from passenger mutations and to investigate relationships among driver mutations. Current methods for de novo discovery of mutually exclusive mutational patterns are limited because the heterogeneity in background mutation rate can confound mutational patterns, and the presence of highly mutated genes can lead to spurious patterns. In addition, most methods only focus on a limited number of pre-selected genes and are unable to perform genome-wide analysis due to computational inefficiency.

RESULTS

We introduce a statistical framework, MEScan, for accurate and efficient mutual exclusivity analysis at the genomic scale. Our framework contains a fast and powerful statistical test for mutual exclusivity with adjustment of the background mutation rate and impact of highly mutated genes, and a multi-step procedure for genome-wide screening with the control of false discovery rate. We demonstrate that MEScan more accurately identifies mutually exclusive gene sets than existing methods and is at least two orders of magnitude faster than most methods. By applying MEScan to data from four different cancer types and pan-cancer, we have identified several biologically meaningful mutually exclusive gene sets.

AVAILABILITY AND IMPLEMENTATION

MEScan is available as an R package at https://github.com/MarkeyBBSRF/MEScan.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

与通路内基因相关的癌症体细胞驱动突变在患者队列中经常表现出相互排斥的模式。这种相互排斥的突变信号已被广泛用于区分驱动突变和乘客突变,并研究驱动突变之间的关系。目前用于发现新的相互排斥突变模式的方法存在局限性,因为背景突变率的异质性会混淆突变模式,并且高度突变基因的存在会导致虚假模式。此外,由于计算效率低下,大多数方法仅关注有限数量的预选基因,无法进行全基因组分析。

结果

我们介绍了一个统计框架 MEScan,用于在基因组范围内进行准确和高效的互斥性分析。我们的框架包含一个快速而强大的互斥性统计检验,可调整背景突变率和高度突变基因的影响,并具有多步全基因组筛选程序,可控制假发现率。我们证明 MEScan 比现有方法更准确地识别相互排斥的基因集,并且速度至少快两个数量级。通过将 MEScan 应用于来自四种不同癌症类型和泛癌症的数据,我们已经确定了几个具有生物学意义的相互排斥的基因集。

可用性和实现

MEScan 可作为 R 包在 https://github.com/MarkeyBBSRF/MEScan 上获得。

补充信息

补充数据可在生物信息学在线获得。

相似文献

3
Modeling mutual exclusivity of cancer mutations.癌症突变互斥性建模。
PLoS Comput Biol. 2014 Mar 27;10(3):e1003503. doi: 10.1371/journal.pcbi.1003503. eCollection 2014 Mar.
5
Simultaneous identification of multiple driver pathways in cancer.同时鉴定癌症中的多个驱动途径。
PLoS Comput Biol. 2013;9(5):e1003054. doi: 10.1371/journal.pcbi.1003054. Epub 2013 May 23.
7
De novo discovery of mutated driver pathways in cancer.癌症中突变驱动途径的从头发现。
Genome Res. 2012 Feb;22(2):375-85. doi: 10.1101/gr.120477.111. Epub 2011 Jun 7.

引用本文的文献

本文引用的文献

1
Pan-cancer analysis of whole genomes.泛癌症全基因组分析。
Nature. 2020 Feb;578(7793):82-93. doi: 10.1038/s41586-020-1969-6. Epub 2020 Feb 5.
8
Mutant IDH1 Promotes Glioma Formation In Vivo.突变 IDH1 促进体内神经胶质瘤的形成。
Cell Rep. 2018 May 1;23(5):1553-1564. doi: 10.1016/j.celrep.2018.03.133.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验