具有聚多巴胺样涂层的混合金属-酚纳米颗粒用于PET/SPECT/CT成像
Hybrid Metal-Phenol Nanoparticles with Polydopamine-like Coating for PET/SPECT/CT Imaging.
作者信息
Suárez-García Salvio, Esposito Tullio V F, Neufeld-Peters Jenna, Bergamo Marta, Yang Hua, Saatchi Katayoun, Schaffer Paul, Häfeli Urs O, Ruiz-Molina Daniel, Rodríguez-Rodríguez Cristina, Novio Fernando
机构信息
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain.
Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
出版信息
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10705-10718. doi: 10.1021/acsami.0c20612. Epub 2021 Feb 26.
The validation of metal-phenolic nanoparticles (MPNs) in preclinical imaging studies represents a growing field of interest due to their versatility in forming predesigned structures with unique properties. Before MPNs can be used in medicine, their pharmacokinetics must be optimized so that accumulation in nontargeted organs is prevented and toxicity is minimized. Here, we report the fabrication of MPNs made of a coordination polymer core that combines In(III), Cu(II), and a mixture of the imidazole 1,4-bis(imidazole-1-ylmethyl)-benzene and the catechol 3,4-dihydroxycinnamic acid ligands. Furthermore, a phenolic-based coating was used as an anchoring platform to attach poly(ethylene glycol) (PEG). The resulting MPNs, with effective hydrodynamic diameters of around 120 nm, could be further derivatized with surface-embedded molecules, such as folic acid, to facilitate targeting and multifunctionality. The prepared MPNs were evaluated for plasma stability, cytotoxicity, and cell internalization and found to be biocompatible under physiological conditions. First, biomedical evaluations were then performed by intrinsically incorporating trace amounts of the radioactive metals In or Cu during the MPN synthesis directly into their polymeric matrix. The resulting particles, which had identical physicochemical properties to their nonradioactive counterparts, were used to perform single-photon emission computed tomography (SPECT) and positron emission tomography (PET) in tumor-bearing mice. The ability to incorporate multiple metals and radiometals into MPNs illustrates the diverse range of functional nanoparticles that can be prepared with this approach and broadens the scope of these nanoconstructs as multimodal preclinical imaging agents.
金属-酚类纳米颗粒(MPNs)在临床前成像研究中的验证是一个日益受到关注的领域,因为它们在形成具有独特性质的预先设计结构方面具有多功能性。在MPNs可用于医学之前,必须优化其药代动力学,以防止在非靶向器官中积累并将毒性降至最低。在此,我们报告了由配位聚合物核制成的MPNs的制备,该配位聚合物核结合了铟(III)、铜(II)以及咪唑1,4-双(咪唑-1-基甲基)-苯和儿茶酚3,4-二羟基肉桂酸配体的混合物。此外,基于酚类的涂层被用作连接聚乙二醇(PEG)的锚定平台。所得的MPNs有效流体动力学直径约为120 nm,可进一步用表面嵌入分子(如叶酸)进行衍生化,以促进靶向和多功能性。对制备的MPNs进行了血浆稳定性、细胞毒性和细胞内化评估,发现它们在生理条件下具有生物相容性。首先,在MPN合成过程中直接将痕量放射性金属铟或铜固有地掺入其聚合物基质中,然后进行生物医学评估。所得颗粒与其非放射性对应物具有相同的物理化学性质,用于在荷瘤小鼠中进行单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)。将多种金属和放射性金属掺入MPNs的能力说明了用这种方法可以制备的功能纳米颗粒的多样性,并拓宽了这些纳米结构作为多模态临床前成像剂的范围。