Suppr超能文献

非贵金属镍沉积超长氮化镓纳米线上的压电催化效应诱导水制氢

Piezocatalytic Effect Induced Hydrogen Production from Water over Non-noble Metal Ni Deposited Ultralong GaN Nanowires.

作者信息

Zhang Mingxiang, Zhao Shiyin, Zhao Zhicheng, Li Shun, Wang Fei

机构信息

School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10916-10924. doi: 10.1021/acsami.0c21976. Epub 2021 Feb 26.

Abstract

Piezoelectric material-based catalysis that relies on an external stress-induced piezopotential has been demonstrated to be an effective strategy toward various chemical reactions. In this work, non-noble metal Ni-decorated ultralong monocrystal GaN nanowires (NWs) were prepared through a chemical vapor deposition (CVD) technique, followed by a photodeposition method. The piezocatalytic activity of the GaN NWs was enhanced by ∼9 times after depositing the Ni cocatalyst, generating hydrogen gas of ∼88.3 μmol·g·h under ultrasonic vibration (110 W and 40 kHz), which is comparable to that of Pt-loaded GaN NWs. Moreover, Ni/GaN NWs with smaller diameters (∼100 nm) demonstrated superior piezocatalytic efficiency, which can be attributed to the large piezoelectric potential evidenced by both finite-element analysis and piezoresponse force microscopy measurements. These results demonstrate the promising application potential of non-noble metal loaded GaN nanostructures in hydrogen generation driven by weak mechanical energy from the surrounding environment.

摘要

基于外部应力诱导压电电势的压电材料催化已被证明是实现各种化学反应的有效策略。在这项工作中,通过化学气相沉积(CVD)技术制备了非贵金属镍修饰的超长单晶氮化镓纳米线(NWs),随后采用光沉积法。沉积镍助催化剂后,氮化镓纳米线的压电催化活性提高了约9倍,在超声振动(110 W和40 kHz)下产生约88.3 μmol·g·h的氢气,这与负载铂的氮化镓纳米线相当。此外,直径较小(约100 nm)的镍/氮化镓纳米线表现出优异的压电催化效率,这可归因于有限元分析和压电响应力显微镜测量所证实的较大压电电势。这些结果证明了非贵金属负载的氮化镓纳米结构在由周围环境的弱机械能驱动的氢气生成中的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验