He Teng-Fei, Ren Ai-Min, Li Guo-Hui, Qu Ze-Xing, Guo Jing-Fu, Hao Xue-Li, Chen Yuan-Nan, Shen Lu, Zhang Yun-Li, Zou Lu-Yi
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China.
Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P.R. China.
J Phys Chem Lett. 2021 Mar 11;12(9):2232-2244. doi: 10.1021/acs.jpclett.1c00119. Epub 2021 Feb 26.
Profound understanding of the luminescence mechanism and structure-property relationship is vital for Cu(I) thermally activated delayed fluorescence (TADF) emitters. Herein, we theoretically simulated luminescent behavior in both solution and solid phases for two Cu(I) complexes and found the following: (i) The strengthened spin-orbit coupling (SOC) effect by more d orbital contributions and well-restricted structural distortion via remarkable intramolecular interaction in [Cu(dmp)(POP)] enable the emission at room temperature to be a mixture of direct phosphorescence (10%) and TADF (90%). (ii) Benefiting from enhanced steric hindrance and the electron-donating ability of the paracyclophane group, the narrowed S-T energy separation (Δ) in [Cu(dmp)(phanephos)] accelerates the reverse intersystem crossing, promoting the TADF rate (1.88 × 10 s) and intensity ratio (98.3%). These results indicate that the small Δ is superior for reducing the lifetime and that the strong SOC stimulates the phosphorescence to compete with TADF, which are both conducive to avoiding collision-induced exciton quenching and reducing the roll-off in devices.
深入理解发光机制以及结构与性能的关系对于铜(I)热激活延迟荧光(TADF)发光体至关重要。在此,我们对两种铜(I)配合物在溶液和固相中的发光行为进行了理论模拟,结果如下:(i)在[Cu(dmp)(POP)]中,更多的d轨道贡献增强了自旋轨道耦合(SOC)效应,并且通过显著的分子内相互作用很好地限制了结构畸变,使得室温下的发射是直接磷光(10%)和TADF(90%)的混合。(ii)得益于对环芳基增强的空间位阻和给电子能力,[Cu(dmp)(phanephos)]中缩小的S-T能量差(Δ)加速了反向系间窜越,提高了TADF速率(1.88×10 s)和强度比(98.3%)。这些结果表明,小的Δ对于缩短寿命更有利,而强的SOC促使磷光与TADF竞争,这两者都有利于避免碰撞诱导的激子猝灭并减少器件中的滚降。