Wei Qiang, Imbrasas Paulius, Caldera-Cruz Enrique, Cao Liang, Fei Nanan, Thomas Heidi, Scholz Reinhard, Lenk Simone, Voit Brigitte, Reineke Sebastian, Ge Ziyi
Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo 315201, P. R. China.
Center for Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China.
J Phys Chem A. 2021 Feb 18;125(6):1345-1354. doi: 10.1021/acs.jpca.0c08977. Epub 2021 Feb 8.
Materials exhibiting thermally activated delayed fluorescence (TADF) have been extensively explored in the last decade. These emitters have great potential of being used in organic light-emitting diodes because they allow for high quantum efficiencies by utilizing triplet states via reverse intersystem crossing. In small molecules, this is done by spatially separating the highest occupied molecular orbital from the lowest unoccupied molecular orbital, forming an intramolecular charge-transfer (iCT) state and leading to a small energy difference between lowest excited singlet and triplet states (Δ). However, in polymer emitters, this is harder to achieve, and typical strategies usually include adding known TADF units as sidechains onto a polymer backbone. In a previous work, we proposed an alternative way to achieve a TADF polymer by repeating a non-TADF unit, polymerizing it via electron-donating carbazole moieties. The extended conjugation on the backbone reduced the Δ and allowed for an efficient TADF polymer. In this work, we present a more in-depth study of the shift from a non-TADF monomer to TADF oligomers. The monomer shows non-TADF emission, and we find the delayed emission to be of triplet-triplet annihilation origin. An iCT state is formed already in the dimer, leading to a much more efficient TADF emission. This is confirmed by an almost two-fold increase of photoluminescence quantum yield, a decrease in the delayed luminescence lifetime, and the respective spectral lineshapes of the molecules.
在过去十年中,人们对具有热激活延迟荧光(TADF)的材料进行了广泛研究。这些发光体在有机发光二极管中具有巨大的应用潜力,因为它们可以通过反向系间窜越利用三重态,从而实现高量子效率。在小分子中,这是通过将最高占据分子轨道与最低未占据分子轨道在空间上分离来实现的,形成分子内电荷转移(iCT)态,并导致最低激发单重态和三重态之间的能量差较小(Δ)。然而,在聚合物发光体中,这很难实现,典型的策略通常包括将已知的TADF单元作为侧链添加到聚合物主链上。在之前的一项工作中,我们提出了一种通过重复非TADF单元,并通过供电子咔唑基团使其聚合来制备TADF聚合物的替代方法。主链上的共轭扩展降低了Δ,从而得到了一种高效的TADF聚合物。在这项工作中,我们对从非TADF单体到TADF低聚物的转变进行了更深入的研究。单体表现出非TADF发射,我们发现延迟发射源于三重态-三重态湮灭。在二聚体中已经形成了iCT态,从而导致了更高效的TADF发射。这通过光致发光量子产率几乎增加两倍、延迟发光寿命缩短以及分子各自的光谱线形得到了证实。