Department of Computer Science, The University of Manchester, Manchester, UK.
Division of Informatics, Imaging and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK.
Comput Biol Med. 2021 Apr;131:104281. doi: 10.1016/j.compbiomed.2021.104281. Epub 2021 Feb 17.
Torsade de points (TdP), a life-threatening arrhythmia that can increase the risk of sudden cardiac death, is associated with drug-induced QT-interval prolongation on the electrocardiogram (ECG). While many modern ECG machines provide automated measurements of the QT-interval, these automated QT values are usually correct only for a noise-free normal sinus rhythm, in which the T-wave morphology is well defined. As QT-prolonging drugs often affect the morphology of the T-wave, automated QT measurements taken under these circumstances are easily invalidated. An additional challenge is that the QT-value at risk of TdP varies with heart rate, with the slower the heart rate, the greater the risk of TdP. This paper presents an explainable algorithm that uses an understanding of human visual perception and expert ECG interpretation to automate the detection of QT-prolongation at risk of TdP regardless of heart rate and T-wave morphology. It was tested on a large number of ECGs (n=5050) with variable QT-intervals at varying heart rates, acquired from a clinical trial that assessed the effect of four known QT-prolonging drugs versus placebo on healthy subjects. The algorithm yielded a balanced accuracy of 0.97, sensitivity of 0.94, specificity of 0.99, F1-score of 0.88, ROC (AUC) of 0.98, precision-recall (AUC) of 0.88, and Matthews correlation coefficient (MCC) of 0.88. The results indicate that a prolonged ventricular repolarisation area can be a significant risk predictor of TdP, and detection of this is potentially easier and more reliable to automate than measuring the QT-interval distance directly. The proposed algorithm can be visualised using pseudo-colour on the ECG trace, thus intuitively 'explaining' how its decision was made, which results of a focus group show may help people to self-monitor QT-prolongation, as well as ensuring clinicians can validate its results.
尖端扭转型室性心动过速(TdP)是一种危及生命的心律失常,可增加心源性猝死的风险,与心电图(ECG)上药物引起的 QT 间期延长有关。虽然许多现代心电图机提供 QT 间期的自动测量,但这些自动 QT 值通常仅适用于无噪声的正常窦性节律,在此节律中 T 波形态定义明确。由于 QT 延长药物通常会影响 T 波形态,因此在这些情况下进行的自动 QT 测量很容易失效。另一个挑战是,TdP 风险的 QT 值随心率而变化,心率越慢,TdP 的风险越大。本文提出了一种可解释的算法,该算法利用对人类视觉感知和专家心电图解释的理解,无论心率和 T 波形态如何,自动检测 TdP 风险的 QT 延长。它在一项临床试验中进行了测试,该试验评估了四种已知的 QT 延长药物与安慰剂对健康受试者的影响,该试验在不同心率下获取了具有不同 QT 间隔的大量 ECG(n=5050)。该算法的平衡准确率为 0.97,灵敏度为 0.94,特异性为 0.99,F1 得分为 0.88,ROC(AUC)为 0.98,精度-召回(AUC)为 0.88,马修斯相关系数(MCC)为 0.88。结果表明,心室复极区域延长可能是 TdP 的一个重要风险预测因子,与直接测量 QT 间期距离相比,检测这一点可能更容易且更可靠地自动化。该算法可以在 ECG 迹线上使用伪彩色进行可视化,从而直观地“解释”其决策过程,焦点小组的结果表明,这可能有助于人们自我监测 QT 延长,同时确保临床医生可以验证其结果。
J Am Coll Cardiol. 2007-1-23
J Cardiovasc Electrophysiol. 2020-10
Wien Klin Wochenschr. 2008
Wirel Commun Mob Comput. 2021-7-1