文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对当前及未来用于心电图计算机解读的人工智能应用的不同态度:一项临床利益相关者访谈研究

Contrasting attitudes towards current and future artificial intelligence applications for computerised interpretation of electrocardiograms: a clinical stakeholder interview study.

作者信息

Hughes-Noehrer Lukas, Channer Leda, Strain Gabriel, Yates Gregory, Body Richard, Jay Caroline

机构信息

Department of Computer Science, The University of Manchester, Manchester M13 9PL, United Kingdom.

Manchester University NHS Foundation Trust, Manchester M13 9WL, United Kingdom.

出版信息

JAMIA Open. 2025 Jul 21;8(4):ooaf071. doi: 10.1093/jamiaopen/ooaf071. eCollection 2025 Aug.


DOI:10.1093/jamiaopen/ooaf071
PMID:40692805
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12278055/
Abstract

OBJECTIVES: To investigate clinicians' attitudes towards current automated interpretation of ECG and novel AI technologies and their perception of computer-assisted interpretation. MATERIALS AND METHODS: We conducted a series of interviews with clinicians in the UK. Our study: (1) explores the potential for AI, specifically future "human-like" computing approaches, to facilitate ECG interpretation and support clinical decision making, and (2) elicits their opinions about the importance of explainability and trustworthiness of AI algorithms. RESULTS: We performed inductive thematic analysis on interview transcriptions from 23 clinicians and identified the following themes: (1) a lack of trust in current systems, (2) positive attitudes towards future AI applications and requirements for these, (3) the relationship between the accuracy and explainability of algorithms, and (4) opinions on education, possible deskilling, and the impact of AI on clinical competencies. DISCUSSION: Clinicians do not trust current computerised methods, but welcome future "AI" technologies. Where clinicians trust future AI interpretation to be accurate, they are less concerned that it is explainable. They also preferred ECG interpretation that demonstrated the results of the algorithm visually. Whilst clinicians do not fear job losses, they are concerned about deskilling and the need to educate the workforce to use AI responsibly. CONCLUSION: Clinicians are positive about the future application of AI in clinical decision-making. Accuracy is a key factor of uptake and visualisations are preferred over current computerised methods. This is viewed as a potential means of training and upskilling, in contrast to the deskilling that automation might be perceived to bring.

摘要

目的:调查临床医生对当前心电图自动解读及新型人工智能技术的态度,以及他们对计算机辅助解读的看法。 材料与方法:我们对英国的临床医生进行了一系列访谈。我们的研究:(1)探讨人工智能,特别是未来“类人”计算方法在促进心电图解读和支持临床决策方面的潜力,(2)征求他们对人工智能算法可解释性和可信度重要性的意见。 结果:我们对23名临床医生的访谈转录本进行了归纳主题分析,确定了以下主题:(1)对当前系统缺乏信任,(2)对未来人工智能应用的积极态度及其要求,(3)算法准确性与可解释性之间的关系,(4)对教育、可能出现的技能退化以及人工智能对临床能力影响的看法。 讨论:临床医生不信任当前的计算机化方法,但欢迎未来的“人工智能”技术。当临床医生相信未来的人工智能解读准确时,他们对其是否可解释的担忧就会减少。他们也更喜欢能直观展示算法结果的心电图解读方式。虽然临床医生不担心失业,但他们担心技能退化以及有必要教育工作人员负责任地使用人工智能。 结论:临床医生对人工智能在临床决策中的未来应用持积极态度。准确性是采用的关键因素,与当前的计算机化方法相比,可视化方式更受青睐。这被视为一种潜在的培训和提升技能的手段,与自动化可能带来的技能退化形成对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cc/12278055/a3e7e5424701/ooaf071f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cc/12278055/a3e7e5424701/ooaf071f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cc/12278055/a3e7e5424701/ooaf071f1.jpg

相似文献

[1]
Contrasting attitudes towards current and future artificial intelligence applications for computerised interpretation of electrocardiograms: a clinical stakeholder interview study.

JAMIA Open. 2025-7-21

[2]
Sexual Harassment and Prevention Training

2025-1

[3]
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.

Autism Adulthood. 2025-5-28

[4]
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.

Autism Adulthood. 2024-9-16

[5]
Perspectives of Health Care Professionals on the Use of AI to Support Clinical Decision-Making in the Management of Multiple Long-Term Conditions: Interview Study.

J Med Internet Res. 2025-7-4

[6]
"Just Ask What Support We Need": Autistic Adults' Feedback on Social Skills Training.

Autism Adulthood. 2025-5-28

[7]
"I Don't Understand Their Sense of Belonging": Exploring How Nonbinary Autistic Adults Experience Gender.

Autism Adulthood. 2024-12-2

[8]
Parents' and informal caregivers' views and experiences of communication about routine childhood vaccination: a synthesis of qualitative evidence.

Cochrane Database Syst Rev. 2017-2-7

[9]
Multi-stakeholder preferences for the use of artificial intelligence in healthcare: A systematic review and thematic analysis.

Soc Sci Med. 2023-12

[10]
Health Care Professionals' Experience of Using AI: Systematic Review With Narrative Synthesis.

J Med Internet Res. 2024-10-30

本文引用的文献

[1]
To do no harm - and the most good - with AI in health care.

Nat Med. 2024-3

[2]
Automatic triage of twelve-lead electrocardiograms using deep convolutional neural networks: a first implementation study.

Eur Heart J Digit Health. 2023-11-8

[3]
Validation of an automated artificial intelligence system for 12‑lead ECG interpretation.

J Electrocardiol. 2024

[4]
Attitudes towards artificial intelligence in emergency medicine.

Emerg Med Australas. 2024-4

[5]
Clinical perspectives on the adoption of the artificial intelligence-enabled electrocardiogram.

J Electrocardiol. 2023

[6]
Artificial intelligence-enabled tools in cardiovascular medicine: A survey of current use, perceptions, and challenges.

Cardiovasc Digit Health J. 2023-5-3

[7]
Diagnostic accuracy of the PMcardio smartphone application for artificial intelligence-based interpretation of electrocardiograms in primary care (AMSTELHEART-1).

Cardiovasc Digit Health J. 2023-4-5

[8]
Solving the explainable AI conundrum by bridging clinicians' needs and developers' goals.

NPJ Digit Med. 2023-5-22

[9]
Current and Future Use of Artificial Intelligence in Electrocardiography.

J Cardiovasc Dev Dis. 2023-4-17

[10]
Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare.

Eur Heart J. 2023-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索