Suppr超能文献

相似文献

1
Sensor-based detection of algal blooms for public health advisories and long-term monitoring.
Sci Total Environ. 2021 May 1;767:144984. doi: 10.1016/j.scitotenv.2021.144984. Epub 2021 Jan 28.
3
Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
Harmful Algae. 2017 Jun;66:13-19. doi: 10.1016/j.hal.2017.04.013. Epub 2017 May 25.
4
Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs.
J Environ Manage. 2024 Jan 1;349:119518. doi: 10.1016/j.jenvman.2023.119518. Epub 2023 Nov 7.
5
[Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
Huan Jing Ke Xue. 2019 Feb 8;40(2):603-613. doi: 10.13227/j.hjkx.201804047.
6
Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes.
Water Res. 2023 Aug 15;242:120076. doi: 10.1016/j.watres.2023.120076. Epub 2023 May 23.
7
Assessment of in-situ monitoring and tracking the vertical migration of cyanobacterial blooms using LISST-HAB.
Water Res. 2024 Jun 15;257:121693. doi: 10.1016/j.watres.2024.121693. Epub 2024 May 2.
8
Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States.
Sci Total Environ. 2023 Apr 15;869:161784. doi: 10.1016/j.scitotenv.2023.161784. Epub 2023 Jan 23.
9
High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake.
Sci Total Environ. 2019 Apr 15;661:465-480. doi: 10.1016/j.scitotenv.2019.01.141. Epub 2019 Jan 15.

引用本文的文献

1
Introducing ARTiMiS: A Low-Cost Flow Imaging Microscope for Microalgal Monitoring.
Environ Sci Technol. 2024 Jul 19;58(30):13540-51. doi: 10.1021/acs.est.4c01928.
2
Novel Application of Survival Models for Predicting Microbial Community Transitions with Variable Selection for Environmental DNA.
Appl Environ Microbiol. 2022 Mar 22;88(6):e0214621. doi: 10.1128/AEM.02146-21. Epub 2022 Feb 9.

本文引用的文献

1
Widespread global increase in intense lake phytoplankton blooms since the 1980s.
Nature. 2019 Oct;574(7780):667-670. doi: 10.1038/s41586-019-1648-7. Epub 2019 Oct 14.
3
Cyanobacterial blooms.
Nat Rev Microbiol. 2018 Aug;16(8):471-483. doi: 10.1038/s41579-018-0040-1.
4
Fluorescence probes for real-time remote cyanobacteria monitoring: A review of challenges and opportunities.
Water Res. 2018 Sep 15;141:152-162. doi: 10.1016/j.watres.2018.05.001. Epub 2018 May 10.
5
The predictability of a lake phytoplankton community, over time-scales of hours to years.
Ecol Lett. 2018 May;21(5):619-628. doi: 10.1111/ele.12927. Epub 2018 Mar 12.
6
Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.
Sci Total Environ. 2018 Jan 15;612:1200-1214. doi: 10.1016/j.scitotenv.2017.08.219. Epub 2017 Sep 8.
7
Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment.
Environ Sci Technol. 2017 Aug 15;51(16):8933-8943. doi: 10.1021/acs.est.7b01498. Epub 2017 Jul 25.
8
Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations.
Water Res. 2016 Nov 15;105:22-33. doi: 10.1016/j.watres.2016.08.051. Epub 2016 Aug 26.
10
Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate.
Water Res. 2012 Apr 1;46(5):1394-407. doi: 10.1016/j.watres.2011.12.016. Epub 2011 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验