Suppr超能文献

基于电子健康记录数据比较临床检验项目的特定种族参考区间

Comparing Ethnicity-Specific Reference Intervals for Clinical Laboratory Tests from EHR Data.

作者信息

Rappoport Nadav, Paik Hyojung, Oskotsky Boris, Tor Ruth, Ziv Elad, Zaitlen Noah, Butte Atul J

机构信息

Institute for Computational Health Sciences, University of California, San Francisco, CA.

Department of Pediatrics, University of California, San Francisco, San Francisco, CA.

出版信息

J Appl Lab Med. 2018 Nov 1;3(3):366-377. doi: 10.1373/jalm.2018.026492.

Abstract

BACKGROUND

The results of clinical laboratory tests are an essential component of medical decision-making. To guide interpretation, test results are returned with reference intervals defined by the range in which the central 95% of values occur in healthy individuals. Clinical laboratories often set their own reference intervals to accommodate variation in local population and instrumentation. For some tests, reference intervals change as a function of sex, age, and self-identified race and ethnicity.

METHODS

In this work, we develop a novel approach, which leverages electronic health record data, to identify healthy individuals and tests for differences in laboratory test values between populations.

RESULTS

We found that the distributions of >50% of laboratory tests with currently fixed reference intervals differ among self-identified racial and ethnic groups (SIREs) in healthy individuals.

CONCLUSIONS

Our results confirm the known SIRE-specific differences in creatinine and suggest that more research needs to be done to determine the clinical implications of using one-size-fits-all reference intervals for other tests with SIRE-specific distributions.

摘要

背景

临床实验室检测结果是医疗决策的重要组成部分。为指导解读,检测结果会附带参考区间,该区间由健康个体中95%的中心值范围确定。临床实验室通常会设定自己的参考区间,以适应当地人群和仪器设备的差异。对于某些检测,参考区间会因性别、年龄以及自我认定的种族和民族而有所变化。

方法

在这项研究中,我们开发了一种利用电子健康记录数据的新方法,以识别健康个体并检测不同人群之间实验室检测值的差异。

结果

我们发现,在健康个体中,目前具有固定参考区间的50%以上的实验室检测在自我认定的种族和民族群体(SIREs)之间分布存在差异。

结论

我们的结果证实了已知的肌酐在不同种族和民族群体中的差异,并表明需要进行更多研究,以确定对其他具有种族和民族群体特定分布的检测使用一刀切的参考区间的临床意义。

相似文献

1
Comparing Ethnicity-Specific Reference Intervals for Clinical Laboratory Tests from EHR Data.
J Appl Lab Med. 2018 Nov 1;3(3):366-377. doi: 10.1373/jalm.2018.026492.
3
The Canadian laboratory initiative on pediatric reference intervals: A CALIPER white paper.
Crit Rev Clin Lab Sci. 2017 Sep;54(6):358-413. doi: 10.1080/10408363.2017.1379945. Epub 2017 Oct 11.
7
Collaborative derivation of reference intervals for major clinical laboratory tests in Japan.
Ann Clin Biochem. 2016 May;53(Pt 3):347-56. doi: 10.1177/0004563215608875. Epub 2015 Sep 11.
9
Influence of ethnicity on population reference values for biochemical markers.
Crit Rev Clin Lab Sci. 2018 Aug;55(5):359-375. doi: 10.1080/10408363.2018.1476455. Epub 2018 Jun 6.

引用本文的文献

1
Eosinopenia in bronchiectasis: A novel biomarker for morbidity and mortality.
Chron Respir Dis. 2025 Jan-Dec;22:14799731241296847. doi: 10.1177/14799731241296847.
2
Clinical associations with a polygenic predisposition to benign lower white blood cell counts.
Nat Commun. 2024 Apr 22;15(1):3384. doi: 10.1038/s41467-024-47804-5.
3
Normal Clinical Laboratory Ranges by Age and Sex, and Impact on Study Screening Outcomes in Rural Mali.
Am J Trop Med Hyg. 2024 Mar 26;110(5):1021-1028. doi: 10.4269/ajtmh.23-0719. Print 2024 May 1.
4
The Role and Limitations of the Reference Interval Within Clinical Chemistry and Its Reliability for Disease Detection.
Br J Biomed Sci. 2024 Feb 28;81:12339. doi: 10.3389/bjbs.2024.12339. eCollection 2024.
5
Validity of European-centric cardiometabolic polygenic scores in multi-ancestry populations.
Eur J Hum Genet. 2024 Jun;32(6):697-707. doi: 10.1038/s41431-023-01517-3. Epub 2024 Jan 5.
8
Population-wide analysis of hospital laboratory tests to assess seasonal variation and temporal reference interval modification.
Patterns (N Y). 2023 Jun 28;4(8):100778. doi: 10.1016/j.patter.2023.100778. eCollection 2023 Aug 11.
9
Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:153-171. doi: 10.1146/annurev-biodatasci-020722-020704. Epub 2023 Apr 27.
10
Health inequities and the inappropriate use of race in nephrology.
Nat Rev Nephrol. 2022 Feb;18(2):84-94. doi: 10.1038/s41581-021-00501-8. Epub 2021 Nov 8.

本文引用的文献

2
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
4
Leveraging population admixture to characterize the heritability of complex traits.
Nat Genet. 2014 Dec;46(12):1356-62. doi: 10.1038/ng.3139. Epub 2014 Nov 10.
5
Effect of Genetic African Ancestry on eGFR and Kidney Disease.
J Am Soc Nephrol. 2015 Jul;26(7):1682-92. doi: 10.1681/ASN.2014050474. Epub 2014 Oct 27.
6
Hemoglobin A1c, fasting plasma glucose, and 2-hour plasma glucose distributions in U.S. population subgroups: NHANES 2005-2010.
Ann Epidemiol. 2014 Feb;24(2):83-9. doi: 10.1016/j.annepidem.2013.10.008. Epub 2013 Oct 18.
8
Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults.
N Engl J Med. 2010 Mar 4;362(9):800-11. doi: 10.1056/NEJMoa0908359.
10
Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences.
Ann Intern Med. 2007 Apr 3;146(7):486-92. doi: 10.7326/0003-4819-146-7-200704030-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验