Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital- Unity Health Toronto, 209 Victoria Street, East Building, Room 723, Toronto, Ontario, M5B 1W8, Canada.
Division of Geriatric Medicine, Department of Medicine, University of Toronto, 190 Elizabeth Street, R. Fraser Elliott Building, 3-805, Toronto, Ontario, M5G 2C4, Canada.
BMC Med Res Methodol. 2021 Feb 26;21(1):41. doi: 10.1186/s12874-021-01228-7.
Clinical interpretation of changes measured on a scale is dependent on knowing the minimum clinically important difference (MCID) for that scale: the threshold above which clinicians, patients, and researchers perceive an outcome difference. Until now, approaches to determining MCIDs were based upon individual studies or surveys of experts. However, the comparison of meta-analytic treatment effects to a MCID derived from a distribution of standard deviations (SDs) associated with all trial-specific outcomes in a meta-analysis could improve our clinical understanding of meta-analytic treatment effects.
We approximated MCIDs using a distribution-based approach that pooled SDs associated with baseline mean or mean change values for two scales (i.e. Mini-Mental State Exam [MMSE] and Alzheimer Disease Assessment Scale - Cognitive Subscale [ADAS-Cog]), as reported in parallel randomized trials (RCTs) that were included in a systematic review of cognitive enhancing medications for dementia (i.e. cholinesterase inhibitors and memantine). We excluded RCTs that did not report baseline or mean change SD values. We derived MCIDs at 0.4 and 0.5 SDs of the pooled SD and compared our derived MCIDs to previously published MCIDs for the MMSE and ADAS-Cog.
We showed that MCIDs derived from a distribution-based approach approximated published MCIDs for the MMSE and ADAS-Cog. For the MMSE (51 RCTs, 12,449 patients), we derived a MCID of 1.6 at 0.4 SDs and 2 at 0.5 SDs using baseline SDs and we derived a MCID of 1.4 at 0.4 SDs and 1.8 at 0.5 SDs using mean change SDs. For the ADAS-Cog (37 RCTs, 10,006 patients), we derived a MCID of 4 at 0.4 SDs and 5 at 0.5 SDs using baseline SDs and we derived a MCID of 2.6 at 0.4 SDs and 3.2 at 0.5 SDs using mean change SDs.
A distribution-based approach using data included in a systematic review approximated known MCIDs. Our approach performed better when we derived MCIDs from baseline as opposed to mean change SDs. This approach could facilitate clinical interpretation of outcome measures reported in RCTs and systematic reviews of interventions. Future research should focus on the generalizability of this method to other clinical scenarios.
在量表上测量的变化的临床解释取决于对该量表的最小临床重要差异(MCID)的了解:临床医生、患者和研究人员认为结果有差异的阈值。到目前为止,确定 MCID 的方法是基于个体研究或专家调查。然而,将荟萃分析的治疗效果与从荟萃分析中与所有特定试验结果相关的标准差(SD)分布中得出的 MCID 进行比较,可以提高我们对荟萃分析治疗效果的临床理解。
我们使用基于分布的方法来近似 MCID,该方法汇集了与两项量表(即 Mini-Mental State Examination [MMSE] 和 Alzheimer Disease Assessment Scale - Cognitive Subscale [ADAS-Cog])的基线均值或均值变化值相关的 SD,这些量表报告了系统评价中的平行随机试验(RCT)(即胆碱酯酶抑制剂和美金刚)用于痴呆症的认知增强药物。我们排除了未报告基线或均值变化 SD 值的 RCT。我们在汇总 SD 的 0.4 和 0.5 SD 处得出 MCID,并将我们的 MCID 与 MMSE 和 ADAS-Cog 的先前发表的 MCID 进行比较。
我们表明,基于分布的方法得出的 MCID 接近 MMSE 和 ADAS-Cog 的已发表 MCID。对于 MMSE(51 项 RCT,12449 名患者),我们从基线 SD 中得出 0.4 SD 处的 MCID 为 1.6,0.5 SD 处的 MCID 为 2,从均值变化 SD 中得出 0.4 SD 处的 MCID 为 1.4,0.5 SD 处的 MCID 为 1.8。对于 ADAS-Cog(37 项 RCT,10006 名患者),我们从基线 SD 中得出 0.4 SD 处的 MCID 为 4,0.5 SD 处的 MCID 为 5,从均值变化 SD 中得出 0.4 SD 处的 MCID 为 2.6,0.5 SD 处的 MCID 为 3.2。
使用系统评价中包含的数据进行基于分布的方法近似已知的 MCID。当我们从基线而不是均值变化 SD 中得出 MCID 时,我们的方法表现更好。这种方法可以促进对 RCT 和干预系统评价中报告的结果测量的临床解释。未来的研究应侧重于该方法对其他临床情况的可推广性。