Department of Chemistry, University of Warwick, Coventry, UK.
Centre for Scientific Computing, University of Warwick, Coventry, UK.
Nat Commun. 2021 Feb 26;12(1):1323. doi: 10.1038/s41467-021-21717-z.
Understanding the ice recrystallisation inhibition (IRI) activity of antifreeze biomimetics is crucial to the development of the next generation of cryoprotectants. In this work, we bring together molecular dynamics simulations and quantitative experimental measurements to unravel the microscopic origins of the IRI activity of poly(vinyl)alcohol (PVA)-the most potent of biomimetic IRI agents. Contrary to the emerging consensus, we find that PVA does not require a "lattice matching" to ice in order to display IRI activity: instead, it is the effective volume of PVA and its contact area with the ice surface which dictates its IRI strength. We also find that entropic contributions may play a role in the ice-PVA interaction and we demonstrate that small block co-polymers (up to now thought to be IRI-inactive) might display significant IRI potential. This work clarifies the atomistic details of the IRI activity of PVA and provides novel guidelines for the rational design of cryoprotectants.
理解抗冻生物仿制品的冰晶再结晶抑制(IRI)活性对于开发下一代冷冻保护剂至关重要。在这项工作中,我们将分子动力学模拟和定量实验测量相结合,揭示了聚(乙烯醇)(PVA)-最有效的生物仿制品 IRI 试剂的 IRI 活性的微观起源。与新兴共识相反,我们发现 PVA 不需要与冰“晶格匹配”就能显示 IRI 活性:相反,决定其 IRI 强度的是 PVA 的有效体积及其与冰表面的接触面积。我们还发现,熵贡献可能在冰-PVA 相互作用中发挥作用,并且我们证明,小的嵌段共聚物(迄今为止被认为是 IRI 非活性的)可能显示出显著的 IRI 潜力。这项工作阐明了 PVA 的 IRI 活性的原子细节,并为冷冻保护剂的合理设计提供了新的指导。