Center for Engineering in Medicine and BioMEMS Resource Center , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02129 , United States.
Massachusetts General Hospital Cancer Center , Harvard Medical School , Charlestown , Massachusetts 02129 , United States.
Langmuir. 2018 May 1;34(17):5116-5123. doi: 10.1021/acs.langmuir.7b03243. Epub 2017 Dec 13.
Ice formation is a ubiquitous process that poses serious challenges for many areas. Nature has evolved a variety of different mechanisms to regulate ice formation. For example, many cold-adapted species produce antifreeze proteins (AFPs) and/or antifreeze glycoproteins (AFGPs) to inhibit ice recrystallization. Although several synthetic substitutes for AF(G)Ps have been developed, the fundamental principles of designing AF(G)P mimics are still missing. In this study, we explored the molecular dynamics of ice recrystallization inhibition (IRI) by poly(vinyl alcohol) (PVA), a well-recognized ice recrystallization inhibitor, to shed light on the otherwise hidden ice-binding mechanisms of chain polymers. Our molecular dynamics simulations revealed a stereoscopic, geometrical match between the hydroxyl groups of PVA and the water molecules of ice, and provided microscopic evidence of the adsorption of PVA to both the basal and prism faces of ice and the incorporation of short-chain PVA into the ice lattice. The length of PVA, i.e., the number of hydroxyl groups, seems to be a key factor dictating the performance of IRI, as the PVA molecule must be large enough to prevent the joining together of adjacent curvatures in the ice front. The findings in this study will help pave the path for addressing a pressing challenge in designing synthetic ice recrystallization inhibitors rationally, by enriching our mechanistic understanding of IRI process by macromolecules.
冰的形成是一种普遍存在的过程,给许多领域带来了严重的挑战。大自然已经进化出多种不同的机制来调节冰的形成。例如,许多适应寒冷的物种会产生抗冻蛋白 (AFP) 和/或抗冻糖蛋白 (AFGP) 来抑制冰晶重结晶。尽管已经开发出几种 AFP(G)P 的合成替代品,但设计 AFP(G)P 模拟物的基本原理仍然缺失。在这项研究中,我们通过研究聚(乙醇酸)(PVA)抑制冰晶重结晶的分子动力学,探索了聚(乙醇酸)(PVA)抑制冰晶重结晶的分子动力学,以揭示链聚合物隐藏的冰结合机制。我们的分子动力学模拟揭示了 PVA 的羟基与冰晶水分子之间的立体几何匹配,并提供了 PVA 吸附到冰的基面和棱面以及短链 PVA 掺入冰晶格的微观证据。PVA 的长度,即羟基的数量,似乎是决定 IRI 性能的关键因素,因为 PVA 分子必须足够大,以防止冰前缘相邻曲率的连接。这项研究的发现将有助于为合理设计合成冰晶重结晶抑制剂铺平道路,通过丰富我们对大分子 IRI 过程的机制理解。