Suppr超能文献

冰与聚乙烯醇界面的分子动力学及冰再结晶抑制。

Molecular Dynamics at the Interface between Ice and Poly(vinyl alcohol) and Ice Recrystallization Inhibition.

机构信息

Center for Engineering in Medicine and BioMEMS Resource Center , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02129 , United States.

Massachusetts General Hospital Cancer Center , Harvard Medical School , Charlestown , Massachusetts 02129 , United States.

出版信息

Langmuir. 2018 May 1;34(17):5116-5123. doi: 10.1021/acs.langmuir.7b03243. Epub 2017 Dec 13.

Abstract

Ice formation is a ubiquitous process that poses serious challenges for many areas. Nature has evolved a variety of different mechanisms to regulate ice formation. For example, many cold-adapted species produce antifreeze proteins (AFPs) and/or antifreeze glycoproteins (AFGPs) to inhibit ice recrystallization. Although several synthetic substitutes for AF(G)Ps have been developed, the fundamental principles of designing AF(G)P mimics are still missing. In this study, we explored the molecular dynamics of ice recrystallization inhibition (IRI) by poly(vinyl alcohol) (PVA), a well-recognized ice recrystallization inhibitor, to shed light on the otherwise hidden ice-binding mechanisms of chain polymers. Our molecular dynamics simulations revealed a stereoscopic, geometrical match between the hydroxyl groups of PVA and the water molecules of ice, and provided microscopic evidence of the adsorption of PVA to both the basal and prism faces of ice and the incorporation of short-chain PVA into the ice lattice. The length of PVA, i.e., the number of hydroxyl groups, seems to be a key factor dictating the performance of IRI, as the PVA molecule must be large enough to prevent the joining together of adjacent curvatures in the ice front. The findings in this study will help pave the path for addressing a pressing challenge in designing synthetic ice recrystallization inhibitors rationally, by enriching our mechanistic understanding of IRI process by macromolecules.

摘要

冰的形成是一种普遍存在的过程,给许多领域带来了严重的挑战。大自然已经进化出多种不同的机制来调节冰的形成。例如,许多适应寒冷的物种会产生抗冻蛋白 (AFP) 和/或抗冻糖蛋白 (AFGP) 来抑制冰晶重结晶。尽管已经开发出几种 AFP(G)P 的合成替代品,但设计 AFP(G)P 模拟物的基本原理仍然缺失。在这项研究中,我们通过研究聚(乙醇酸)(PVA)抑制冰晶重结晶的分子动力学,探索了聚(乙醇酸)(PVA)抑制冰晶重结晶的分子动力学,以揭示链聚合物隐藏的冰结合机制。我们的分子动力学模拟揭示了 PVA 的羟基与冰晶水分子之间的立体几何匹配,并提供了 PVA 吸附到冰的基面和棱面以及短链 PVA 掺入冰晶格的微观证据。PVA 的长度,即羟基的数量,似乎是决定 IRI 性能的关键因素,因为 PVA 分子必须足够大,以防止冰前缘相邻曲率的连接。这项研究的发现将有助于为合理设计合成冰晶重结晶抑制剂铺平道路,通过丰富我们对大分子 IRI 过程的机制理解。

相似文献

4
Role of synthetic antifreeze agents in catalyzing ice nucleation.合成抗冻剂在催化冰核形成中的作用。
Cryobiology. 2018 Oct;84:91-94. doi: 10.1016/j.cryobiol.2018.08.010. Epub 2018 Aug 22.

引用本文的文献

7
Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges.用于冷冻保存的冰抑制:材料、策略与挑战
Adv Sci (Weinh). 2021 Feb 1;8(6):2002425. doi: 10.1002/advs.202002425. eCollection 2021 Mar.

本文引用的文献

3
Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals.氧化石墨烯限制冰晶的生长和重结晶。
Angew Chem Int Ed Engl. 2017 Jan 19;56(4):997-1001. doi: 10.1002/anie.201609230. Epub 2016 Dec 15.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验