Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
Sci Rep. 2021 Feb 26;11(1):4789. doi: 10.1038/s41598-021-84213-w.
Recent studies identified cyclase-associated proteins (CAPs) as important regulators of actin dynamics that control assembly and disassembly of actin filaments (F-actin). While these studies significantly advanced our knowledge of their molecular functions, the physiological relevance of CAPs largely remained elusive. Gene targeting in mice implicated CAP2 in heart physiology and skeletal muscle development. Heart defects in CAP2 mutant mice were associated with altered activity of serum response factor (SRF), a transcription factor involved in multiple biological processes including heart function, but also skeletal muscle development. By exploiting mouse embryonic fibroblasts (MEFs) from CAP2 mutant mice, we aimed at deciphering the CAP2-dependent mechanism relevant for SRF activity. Reporter assays and mRNA quantification by qPCR revealed reduced SRF-dependent gene expression in mutant MEFs. Reduced SRF activity in CAP2 mutant MEFs was associated with altered actin turnover, a shift in the actin equilibrium towards monomeric actin (G-actin) as well as and reduced nuclear levels of myocardin-related transcription factor A (MRTF-A), a transcriptional SRF coactivator that is shuttled out of the nucleus and, hence, inhibited upon G-actin binding. Moreover, pharmacological actin manipulation with jasplakinolide restored MRTF-A distribution in mutant MEFs. Our data are in line with a model in which CAP2 controls the MRTF-SRF pathway in an actin-dependent manner. While MRTF-A localization and SRF activity was impaired under basal conditions, serum stimulation induced nuclear MRTF-A translocation and SRF activity in mutant MEFs similar to controls. In summary, our data revealed that in MEFs CAP2 controls basal MRTF-A localization and SRF activity, while it was dispensable for serum-induced nuclear MRTF-A translocation and SRF stimulation.
最近的研究确定环化酶相关蛋白 (CAPs) 是调节肌动蛋白动态的重要调节剂,控制肌动蛋白丝 (F-actin) 的组装和拆卸。虽然这些研究极大地提高了我们对其分子功能的认识,但 CAPs 的生理相关性在很大程度上仍然难以捉摸。 小鼠基因靶向研究表明 CAP2 参与心脏生理学和骨骼肌发育。CAP2 突变小鼠的心脏缺陷与血清反应因子 (SRF) 的活性改变有关,SRF 是一种参与多种生物学过程的转录因子,包括心脏功能,但也包括骨骼肌发育。通过利用 CAP2 突变小鼠的胚胎成纤维细胞 (MEFs),我们旨在破译与 SRF 活性相关的 CAP2 依赖性机制。 报告基因检测和 qPCR 定量 mRNA 显示突变 MEFs 中 SRF 依赖性基因表达减少。CAP2 突变 MEFs 中的 SRF 活性降低与肌动蛋白周转率改变有关,肌动蛋白平衡向单体肌动蛋白 (G-actin) 转移,以及心肌相关转录因子 A (MRTF-A) 的核水平降低,MRTF-A 是一种转录 SRF 共激活因子,在 G-actin 结合后被转运出核并因此被抑制。此外,用 Jasplakinolide 进行药理学肌动蛋白处理可恢复突变 MEFs 中的 MRTF-A 分布。 我们的数据与 CAP2 以肌动蛋白依赖的方式控制 MRTF-SRF 途径的模型一致。虽然在基础条件下 MRTF-A 定位和 SRF 活性受损,但血清刺激在突变 MEFs 中诱导核 MRTF-A 易位和 SRF 活性,与对照相似。 总之,我们的数据表明,在 MEFs 中,CAP2 控制基础 MRTF-A 定位和 SRF 活性,而在血清诱导的核 MRTF-A 易位和 SRF 刺激中则不需要。