Suppr超能文献

美国 COVID-19 病死率的种族/民族异质性和城乡差异:基于负二项式和 GIS 的分析。

Racial/Ethnic Heterogeneity and Rural-Urban Disparity of COVID-19 Case Fatality Ratio in the USA: a Negative Binomial and GIS-Based Analysis.

机构信息

Department of Geography, Texas State University, San Marcos, TX, USA.

School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.

出版信息

J Racial Ethn Health Disparities. 2022 Apr;9(2):708-721. doi: 10.1007/s40615-021-01006-7. Epub 2021 Feb 26.

Abstract

The 2019 coronavirus disease (COVID-19) has exacerbated inequality in the United States of America (USA). Black, indigenous, and people of color (BIPOC) are disproportionately affected by the pandemic. This study examines determinants of COVID-19 case fatality ratio (CFR) based on publicly sourced data from January 1 to December 18, 2020, and sociodemographic and rural-urban continuum data from the US Census Bureau. Nonspatial negative binomial Poisson regression and geographically weighted Poisson regression were applied to estimate the global and local relationships between the CFR and predictors-rural-urban continuum, political inclination, and race/ethnicity in 2407 rural counties. The mean COVID-19 CFR among rural counties was 1.79 (standard deviation (SD) = 1.07; 95% CI 1.73-1.84) higher than the total US counties (M = 1.69, SD = 1.18; 95% CI: 1.65-1.73). Based on the global NB model, CFR was positively associated with counties classified as "completely rural" (incidence rate ratio (IRR) = 1.24; 95% CI: 1.12-1.39) and "mostly rural" (IRR = 1.26; 95% CI: 1.15-1.38) relative to "mostly urban" counties. Nonspatial regression indicates that COVID-19 CFR increases by a factor of 8.62, 5.87, 2.61, and 1.36 for one unit increase in county-level percent Blacks, Hispanics, American Indians, and Asian/Pacific Islanders, respectively. Local spatial regression shows CFR was significantly higher in rural counties with a higher share of BIPOC in the Northeast and Midwest regions, and political inclination predicted COVID-19 CFR in rural counties in the Midwest region. In conclusion, spatial and racial/ethnic disparities exist for COVID-19 CFR across the US rural counties, and findings from this study have implications for public health.

摘要

2019 年冠状病毒病(COVID-19)加剧了美利坚合众国(USA)的不平等。黑人和土著以及有色人种(BIPOC)受到大流行的不成比例影响。本研究根据 2020 年 1 月 1 日至 12 月 18 日公开来源的数据以及美国人口普查局的社会人口和城乡连续体数据,检查了 COVID-19 病死率(CFR)的决定因素。非空间负二项泊松回归和地理加权泊松回归用于估计 2407 个农村县的 CFR 与预测因子(城乡连续体、政治倾向和种族/族裔)之间的全球和局部关系。农村县的平均 COVID-19 CFR 比美国各县(M = 1.69,SD = 1.18;95%CI:1.65-1.73)高 1.79(标准差(SD)= 1.07;95%CI:1.73-1.84)。基于全球 NB 模型,CFR 与分类为“完全农村”(发病率比(IRR)= 1.24;95%CI:1.12-1.39)和“主要农村”(IRR = 1.26;95%CI:1.15-1.38)的县呈正相关与“主要城市”县相比。非空间回归表明,相对于“主要城市”县,县一级黑人、西班牙裔、美国印第安人和亚洲/太平洋岛民的比例每增加一个单位,COVID-19 CFR 分别增加 8.62、5.87、2.61 和 1.36 倍。局部空间回归显示,在东北部和中西部地区 BIPOC 比例较高的农村县,CFR 显著较高,而政治倾向则预测了中西部农村县的 COVID-19 CFR。总之,美国农村县的 COVID-19 CFR 存在空间和种族/族裔差异,本研究的结果对公共卫生具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/7909733/1c84b4f1bb93/40615_2021_1006_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验