Hou Zuoxian, Bayly Philip V, Okamoto Ruth J
Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130, USA.
J Acoust Soc Am. 2021 Feb;149(2):1097. doi: 10.1121/10.0003528.
An analytical and numerical investigation of shear wave behavior in nearly-incompressible soft materials with two fiber families was performed, focusing on the effects of material parameters and imposed pre-deformations on wave speed. This theoretical study is motivated by the emerging ability to image shear waves in soft biological tissues by magnetic resonance elastography (MRE). In MRE, the relationships between wave behavior and mechanical properties can be used to characterize tissue properties non-invasively. We demonstrate these principles in two material models, each with two fiber families. One model is a nearly-incompressible linear elastic model that exhibits both shear and tensile anisotropy; the other is a two-fiber-family version of the widely-used Holzapfel-Gasser-Ogden (HGO) model, which is nonlinear. Shear waves can be used to probe nonlinear material behavior using infinitesimal dynamic deformations superimposed on larger, quasi-static "pre-deformations." In this study, closed-form expressions for shear wave speeds in the HGO model are obtained in terms of the model parameters and imposed pre-deformations. Analytical expressions for wave speeds are confirmed by finite element simulations of shear waves with various polarizations and propagation directions. These studies support the feasibility of estimating the parameters of an HGO material model noninvasively from measured shear wave speeds.
对具有两个纤维族的近不可压缩软材料中的剪切波行为进行了分析和数值研究,重点关注材料参数和施加的预变形对波速的影响。这项理论研究的动机源于磁共振弹性成像(MRE)对软生物组织中的剪切波进行成像的新能力。在MRE中,波行为与力学性能之间的关系可用于非侵入性地表征组织特性。我们在两个材料模型中展示了这些原理,每个模型都有两个纤维族。一个模型是近不可压缩线性弹性模型,表现出剪切和拉伸各向异性;另一个是广泛使用的Holzapfel-Gasser-Ogden(HGO)模型的双纤维族版本,它是非线性的。剪切波可用于通过叠加在较大的准静态“预变形”上的无限小动态变形来探测非线性材料行为。在本研究中,根据模型参数和施加的预变形获得了HGO模型中剪切波速度的闭式表达式。通过对具有各种极化和传播方向的剪切波进行有限元模拟,证实了波速的解析表达式。这些研究支持了从测量的剪切波速度非侵入性地估计HGO材料模型参数的可行性。