Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
J Acoust Soc Am. 2018 Oct;144(4):2312. doi: 10.1121/1.5064372.
Dynamic elastography methods-based on optical, ultrasonic, or magnetic resonance imaging-are being developed for quantitatively mapping the shear viscoelastic properties of biological tissues, which are often altered by disease and injury. These diagnostic imaging methods involve analysis of shear wave motion in order to estimate or reconstruct the tissue's shear viscoelastic properties. Most reconstruction methods to date have assumed isotropic tissue properties. However, application to tissues like skeletal muscle and brain white matter with aligned fibrous structure resulting in local transverse isotropic mechanical properties would benefit from analysis that takes into consideration anisotropy. A theoretical approach is developed for the elliptic shear wave pattern observed in transverse isotropic materials subjected to axisymmetric excitation creating radially converging shear waves normal to the fiber axis. This approach, utilizing Mathieu functions, is enabled via a transformation to an elliptic coordinate system with isotropic properties and a ratio of minor and major axes matching the ratio of shear wavelengths perpendicular and parallel to the plane of isotropy in the transverse isotropic material. The approach is validated via numerical finite element analysis case studies. This strategy of coordinate transformation to equivalent isotropic systems could aid in analysis of other anisotropic tissue structures.
基于光学、超声或磁共振成像的动态弹性成像方法正在被开发出来,用于定量绘制生物组织的剪切粘弹性特性,这些特性通常会因疾病和损伤而发生改变。这些诊断成像方法涉及对剪切波运动的分析,以便估计或重建组织的剪切粘弹性特性。迄今为止,大多数重建方法都假设组织具有各向同性的特性。然而,对于具有纤维状结构而导致局部横向各向异性力学特性的组织,如骨骼肌和脑白质,应用这种方法将受益于考虑各向异性的分析。本文针对轴对称激励下横向各向同性材料中观察到的椭圆剪切波模式提出了一种理论方法,这种方法产生了垂直于纤维轴的径向会聚剪切波。这种方法利用 Mathieu 函数,通过将坐标系转换为具有各向同性特性的椭圆坐标系来实现,其中短轴和长轴的比值与横向各向同性材料中垂直和平行于各向同性平面的剪切波长的比值相匹配。该方法通过数值有限元分析案例研究进行了验证。这种坐标变换到等效各向同性系统的策略可以帮助分析其他各向异性组织结构。