Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287-6106, USA.
School of Life Sciences, Arizona State University, Tempe, AZ 85287-6106, USA.
J Ind Microbiol Biotechnol. 2021 Apr 30;48(1-2). doi: 10.1093/jimb/kuab019.
The global transcriptional response of Escherichia coli to styrene and potential influence of exposure source was determined by performing RNA sequencing (RNA-seq) analysis on both styrene-producing and styrene-exposed cells. In both cases, styrene exposure appears to cause both cell envelope and DNA damage, to which cells respond by down-regulating key genes/pathways involved in DNA replication, protein production, and cell wall biogenesis. Among the most significantly up-regulated genes were those involved with phage shock protein response (e.g. pspABCDE/G), general stress regulators (e.g. marA, rpoH), and membrane-altering genes (notably, bhsA, ompR, ldtC), whereas efflux transporters were, surprisingly, unaffected. Subsequent studies with styrene addition demonstrate how strains lacking ompR [involved in controlling outer membrane (OM) composition/osmoregulation] or any of tolQ, tolA, or tolR (involved in OM constriction) each displayed over 40% reduced growth relative to wild-type. Conversely, despite reducing basal fitness, overexpression of plsX (involved in phospholipid biosynthesis) led to 70% greater growth when styrene exposed. These collective differences point to the likely importance of OM properties in controlling native styrene tolerance. Overall, the collective behaviours suggest that, regardless of source, prolonged exposure to inhibitory styrene levels causes cells to shift from'growth mode' to 'survival mode', redistributing cellular resources to fuel native tolerance mechanisms.
通过对生产苯乙烯和暴露于苯乙烯的细胞进行 RNA 测序(RNA-seq)分析,确定了大肠杆菌对苯乙烯的全球转录反应和潜在的暴露源的影响。在这两种情况下,苯乙烯暴露似乎都会导致细胞包膜和 DNA 损伤,细胞通过下调参与 DNA 复制、蛋白质生产和细胞壁生物合成的关键基因/途径来对此做出反应。上调最显著的基因包括噬菌体休克蛋白反应(例如 pspABCDE/G)、一般应激调节剂(例如 marA、rpoH)和改变膜的基因(特别是 bhsA、ompR、ldtC),而外排转运蛋白却出人意料地没有受到影响。随后的苯乙烯添加研究表明,与野生型相比,缺乏 ompR(参与控制外膜(OM)组成/渗透压调节)或 tolQ、tolA 或 tolR(参与 OM 收缩)的菌株的生长分别减少了 40%以上。相反,尽管降低了基础适应性,过表达参与磷脂生物合成的 plsX 会导致暴露于苯乙烯时的生长增加 70%。这些集体差异表明 OM 特性在控制天然苯乙烯耐受性方面可能很重要。总的来说,这些集体行为表明,无论来源如何,长时间暴露于抑制性苯乙烯水平会导致细胞从“生长模式”转变为“生存模式”,重新分配细胞资源以促进天然耐受性机制。