Suppr超能文献

斑马鱼微流体的非侵入式声学捕获

A non-invasive acoustic-trapping of zebrafish microfluidics.

作者信息

Mani Karthick, Chen Chia-Yuan

机构信息

Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.

出版信息

Biomicrofluidics. 2021 Feb 16;15(1):014109. doi: 10.1063/5.0026916. eCollection 2021 Jan.

Abstract

Zebrafish is an emerging alternative model in behavioral and neurological studies for pharmaceutical applications. However, little is known regarding the effects of noise exposure on laboratory-grown zebrafish. Accordingly, this study commenced by exposing zebrafish embryos to loud background noise (≥200 Hz, 80 ± 10 dB) for five days in a microfluidic environment. The noise exposure was found to affect the larvae hatching rate, larvae length, and swimming performance. A microfluidic platform was then developed for the sorting/trapping of hatched zebrafish larvae using a non-invasive method based on light cues and acoustic actuation. The experimental results showed that the proposed method enabled zebrafish larvae to be transported and sorted into specific chambers of the microchannel network in the desired time frame. The proposed non-invasive trapping method thus has potentially profound applications in drug screening.

摘要

斑马鱼是药物应用行为学和神经学研究中一种新兴的替代模型。然而,关于噪声暴露对实验室养殖斑马鱼的影响,人们知之甚少。因此,本研究首先在微流控环境中将斑马鱼胚胎暴露于高声背景噪声(≥200 Hz,80±10 dB)下5天。结果发现,噪声暴露会影响幼虫孵化率、幼虫长度和游泳性能。随后,基于光信号和声学驱动开发了一种非侵入性方法,用于分选/捕获孵化后的斑马鱼幼虫的微流控平台。实验结果表明,该方法能够在所需的时间框架内将斑马鱼幼虫运输并分选到微通道网络的特定腔室中。因此,所提出的非侵入性捕获方法在药物筛选中具有潜在的深远应用。

相似文献

1
A non-invasive acoustic-trapping of zebrafish microfluidics.
Biomicrofluidics. 2021 Feb 16;15(1):014109. doi: 10.1063/5.0026916. eCollection 2021 Jan.
2
A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation.
Biomicrofluidics. 2018 Mar 27;12(2):021101. doi: 10.1063/1.5027014. eCollection 2018 Mar.
3
Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity.
PLoS One. 2014 Apr 14;9(4):e94792. doi: 10.1371/journal.pone.0094792. eCollection 2014.
5
Edible additive effects on zebrafish cardiovascular functionality with hydrodynamic assessment.
Sci Rep. 2020 Oct 1;10(1):16243. doi: 10.1038/s41598-020-73455-9.
6
Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae.
Integr Biol (Camb). 2020 Sep 7;12(8):211-220. doi: 10.1093/intbio/zyaa016.
7
Behavioural responses of zebrafish with sound stimuli in microfluidics.
Lab Chip. 2022 Dec 20;23(1):106-114. doi: 10.1039/d2lc00758d.
8
A Microfluidic System for Stable and Continuous EEG Monitoring from Multiple Larval Zebrafish.
Sensors (Basel). 2020 Oct 19;20(20):5903. doi: 10.3390/s20205903.
9
Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg).
Aquat Toxicol. 2001 Feb;51(4):369-76. doi: 10.1016/s0166-445x(00)00128-4.
10
Alterations in locomotor activity of feeding zebrafish larvae as a consequence of exposure to different environmental factors.
Environ Sci Pollut Res Int. 2018 Feb;25(5):4085-4093. doi: 10.1007/s11356-016-6704-3. Epub 2016 Apr 27.

引用本文的文献

1
Microfluidics for understanding model organisms.
Nat Commun. 2022 Jun 9;13(1):3195. doi: 10.1038/s41467-022-30814-6.
2
An aquatic microrobot for microscale flow manipulation.
Sci Rep. 2022 Mar 23;12(1):5041. doi: 10.1038/s41598-022-07938-2.
3
Progress of Microfluidic Continuous Separation Techniques for Micro-/Nanoscale Bioparticles.
Biosensors (Basel). 2021 Nov 18;11(11):464. doi: 10.3390/bios11110464.

本文引用的文献

2
Microfluidic retention of progressively motile zebrafish sperms.
Lab Chip. 2019 Dec 21;19(24):4033-4042. doi: 10.1039/c9lc00534j. Epub 2019 Nov 20.
3
Boat noise affects the early life history of two damselfishes.
Mar Pollut Bull. 2019 Apr;141:493-500. doi: 10.1016/j.marpolbul.2019.02.054. Epub 2019 Mar 11.
4
A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation.
Biomicrofluidics. 2018 Mar 27;12(2):021101. doi: 10.1063/1.5027014. eCollection 2018 Mar.
6
Behavioral changes in response to sound exposure and no spatial avoidance of noisy conditions in captive zebrafish.
Front Behav Neurosci. 2015 Feb 17;9:28. doi: 10.3389/fnbeh.2015.00028. eCollection 2015.
7
Microfluidic device for a rapid immobilization of zebrafish larvae in environmental scanning electron microscopy.
Cytometry A. 2015 Mar;87(3):190-4. doi: 10.1002/cyto.a.22603. Epub 2014 Dec 5.
8
9
Influences of textured substrates on the heart rate of developing zebrafish embryos.
Nanotechnology. 2013 Jul 5;24(26):265101. doi: 10.1088/0957-4484/24/26/265101. Epub 2013 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验