Wang Xiao-Hui, Zheng Fa-Wei, Gu Zhuo-Wei, Tan Fu-Li, Zhao Jian-Heng, Liu Cang-Li, Sun Cheng-Wei, Liu Jian, Zhang Ping
College of Science, China University of Petroleum-Beijing, Beijing 102249, China.
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
ACS Omega. 2021 Jan 28;6(5):3946-3950. doi: 10.1021/acsomega.0c05794. eCollection 2021 Feb 9.
Room-temperature superconductivity has always been an area of intensive research. Recent findings of clathrate metal hydrides structures have opened up the doors for achieving room-temperature superconductivity in these materials. Here, we report first-principles calculations for stable H-rich clathrate structures of uranium hydrides at high pressures. The clathrate uranium hydrides contain H cages with stoichiometries of H, H, and H, in which H atoms are bonded covalently to other H atoms, and U atoms occupy the centers of the cages. Especially, a UH clathrate structure containing H cages is predicted to have an estimated higher than 77 K at high pressures.
室温超导一直是一个深入研究的领域。近期包合物金属氢化物结构的发现为在这些材料中实现室温超导打开了大门。在此,我们报告了高压下氢化铀富氢包合物结构的第一性原理计算。包合物氢化铀包含化学计量比为H、H和H的H笼,其中H原子与其他H原子共价键合,U原子占据笼的中心。特别是,预测一种包含H笼的UH包合物结构在高压下估计高于77K。