Eilers Gerriet, Schwartz Lennart, Stein Matthias, Zampella Giuseppe, de Gioia Luca, Ott Sascha, Lomoth Reiner
Department of Photochemistry and Molecular Science, The Angström Laboratories, Uppsala University, Box 523, 75120 Uppsala, Sweden.
Chemistry. 2007;13(25):7075-84. doi: 10.1002/chem.200700019.
The protonation behavior of the iron hydrogenase active-site mimic [Fe2(mu-adt)(CO)4(PMe3)2] (1; adt=N-benzyl-azadithiolate) has been investigated by spectroscopic, electrochemical, and computational methods. The combination of an adt bridge and electron-donating phosphine ligands allows protonation of either the adt nitrogen to give [Fe2(mu-Hadt)(CO)4(PMe3)2]+ ([1 H]+), the Fe-Fe bond to give [Fe2(mu-adt)(mu-H)(CO)4(PMe3)2]+ ([1 Hy]+), or both sites simultaneously to give [Fe2(mu-Hadt)(mu-H)(CO)4(PMe3)2]2+ ([1 HHy]2 +). Complex 1 and its protonation products have been characterized in acetonitrile solution by IR, (1)H, and (31)P NMR spectroscopy. The solution structures of all protonation states feature a basal/basal orientation of the phosphine ligands, which contrasts with the basal/apical structure of 1 in the solid state. Density functional calculations have been performed on all protonation states and a comparison between calculated and experimental spectra confirms the structural assignments. The ligand protonated complex [1 H]+ (pKa=12) is the initial, metastable protonation product while the hydride [1 Hy]+ (pKa=15) is the thermodynamically stable singly protonated form. Tautomerization of cation [1 H]+ to [1 Hy]+ does not occur spontaneously. However, it can be catalyzed by HCl (k=2.2 m(-1) s(-1)), which results in the selective formation of cation [1 Hy]+. The protonations of the two basic sites have strong mutual effects on their basicities such that the hydride (pK(a)=8) and the ammonium proton (pK(a)=5) of the doubly protonated cationic complex [1 HHy]2+ are considerably more acidic than in the singly protonated analogues. The formation of dication [1 HHy]2+ from cation [1 H]+ is exceptionally slow with perchloric or trifluoromethanesulfonic acid (k=0.15 m(-1) s(-1)), while the dication is formed substantially faster (k>10(2) m(-1) s(-1)) with hydrobromic acid. Electrochemically, 1 undergoes irreversible reduction at -2.2 V versus ferrocene, and this potential shifts to -1.6, -1.1, and -1.0 V for the cationic complexes [1 H]+, [1 Hy]+, and [1 HHy]2+, respectively, upon protonation. The doubly protonated form [1 HHy]2+ is reduced at less negative potential than all previously reported hydrogenase models, although catalytic proton reduction at this potential is characterized by slow turnover.
通过光谱、电化学和计算方法研究了铁氢化酶活性位点模拟物[Fe2(μ-adt)(CO)4(PMe3)2](1;adt = N-苄基-氮杂二硫醇盐)的质子化行为。adt桥和给电子膦配体的组合使得adt氮质子化生成[Fe2(μ-Hadt)(CO)4(PMe3)2]+([1 H]+),Fe-Fe键质子化生成[Fe2(μ-adt)(μ-H)(CO)4(PMe3)2]+([1 Hy]+),或者两个位点同时质子化生成[Fe2(μ-Hadt)(μ-H)(CO)4(PMe3)2]2+([1 HHy]2 +)。配合物1及其质子化产物已在乙腈溶液中通过红外光谱、1H和31P核磁共振光谱进行了表征。所有质子化状态的溶液结构均具有膦配体的基底/基底取向,这与固态下1的基底/顶端结构形成对比。对所有质子化状态进行了密度泛函计算,计算光谱与实验光谱的比较证实了结构归属。配体质子化的配合物[1 H]+(pKa = 12)是初始的亚稳质子化产物,而氢化物[1 Hy]+(pKa = 15)是热力学稳定的单质子化形式。阳离子[1 H]+向[1 Hy]+的互变异构不会自发发生。然而,它可以被HCl催化(k = 2.2 m-1 s-1),这导致阳离子[1 Hy]+的选择性形成。两个碱性位点的质子化对它们的碱性有很强的相互影响,使得双质子化阳离子配合物[1 HHy]2+的氢化物(pK(a)=8)和铵质子(pK(a)=5)比单质子化类似物的酸性强得多。用高氯酸或三氟甲磺酸从阳离子[1 H]+形成双阳离子[1 HHy]2+异常缓慢(k = 0.15 m-1 s-1),而用氢溴酸形成双阳离子的速度要快得多(k>10(2) m-1 s-1)。在电化学方面,相对于二茂铁,1在-2.2 V处发生不可逆还原,质子化后,阳离子配合物[1 H]+、[1 Hy]+和[1 HHy]2+的该电位分别移至-1.6、-1.1和-1.0 V。双质子化形式[1 HHy]2+在比所有先前报道的氢化酶模型更低的负电位下被还原,尽管在此电位下催化质子还原的特征是周转缓慢。