Suppr超能文献

理解亚苯基单元的顺序氟化对用于非富勒烯有机太阳能电池的二羧酸联噻吩基宽带隙聚合物给体性质的关键作用。

Understanding the Critical Role of Sequential Fluorination of Phenylene Units on the Properties of Dicarboxylate Bithiophene-Based Wide-Bandgap Polymer Donors for Non-Fullerene Organic Solar Cells.

作者信息

Kini Gururaj P, Lee Eui Jin, Jeon Sung Jae, Moon Doo Kyung

机构信息

Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea.

出版信息

Macromol Rapid Commun. 2021 May;42(9):e2000743. doi: 10.1002/marc.202000743. Epub 2021 Mar 1.

Abstract

Design and development of wide bandgap (WBG) polymer donors with low-lying highest occupied molecular orbitals (HOMOs) are increasingly gaining attention in non-fullerene organic photovoltaics since such donors can synergistically enhance power conversion efficiency (PCE) by simultaneously minimizing photon energy loss (E ) and enhancing the spectral response. In this contribution, three new WBG polymer donors, P1, P2, and P3, are prepared by adding phenylene cores with a different number of fluorine (F) substituents (n = 0, 2, and 4, respectively) to dicarboxylate bithiophene-based acceptor units. As predicted, fluorination effectively aides in the lowering of HOMO energy levels, tailoring of the coplanarity and molecular ordering in the polymers. Thus, fluorinated P2 and P3 polymers show higher coplanarity and more intense interchain aggregation than P1, leading to higher charge carrier mobilities and superior phase-separated morphology in the optimized blend films with IT-4F. As a result, both P2:IT-4F and P3:IT-4F realize the best PCEs of 6.89% and 7.03% (vs 0.16% for P1:IT-4F) with lower E values of 0.65 and 0.55 eV, respectively. These results signify the importance of using phenylene units with sequential fluorination in polymer backbone for modifying the optoelectronic properties and realizing low E values by synergistically lowering the HOMO energy levels.

摘要

具有低最高占据分子轨道(HOMO)的宽带隙(WBG)聚合物给体的设计与开发在非富勒烯有机光伏领域越来越受到关注,因为这类给体可以通过同时最小化光子能量损失(E)和增强光谱响应来协同提高功率转换效率(PCE)。在本论文中,通过向基于二羧酸联噻吩的受体单元添加具有不同氟(F)取代基数(分别为n = 0、2和4)的亚苯基核,制备了三种新型WBG聚合物给体P1、P2和P3。正如所预测的,氟化有效地有助于降低HOMO能级,调整聚合物的共平面性和分子有序性。因此,氟化的P2和P3聚合物比P1表现出更高的共平面性和更强的链间聚集,从而在与IT-4F的优化共混膜中具有更高的电荷载流子迁移率和更优异的相分离形态。结果,P2:IT-4F和P3:IT-4F分别实现了6.89%和7.03%的最佳PCE(相比之下,P1:IT-4F为0.16%),且E值分别更低,为0.65和0.55 eV。这些结果表明,在聚合物主链中使用依次氟化的亚苯基单元对于调节光电性能和通过协同降低HOMO能级实现低E值具有重要意义。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验