Suppr超能文献

Origin of ADH-induced vacuoles in rabbit cortical collecting tubule.

作者信息

Kirk K L

机构信息

Department of Physiology and Biophysics, University of Alabama, Birmingham 35294.

出版信息

Am J Physiol. 1988 May;254(5 Pt 2):F719-33. doi: 10.1152/ajprenal.1988.254.5.F719.

Abstract

The origin of the vacuoles that form in the mammalian collecting duct during antidiuretic hormone (ADH)-mediated water reabsorption was examined using two computer-assisted, light microscopic methods. First, differential interference-contrast microscopy was used in combination with a simple morphometric procedure to quantitatively characterize the time course, magnitude, and cell specificity of vacuole formation in the microperfused rabbit cortical collecting tubule. Second, video-intensified fluorescence microscopy was used to visualize the basolateral endocytosis of a fluorescent, fluid-phase marker (i.e., lucifer yellow) during vacuole formation. In the presence of a lumen-to-bath osmotic gradient, ADH addition induced the rapid (less than 10 min) formation of large (1- to 3-micron diam) vacuoles in principal cells and, to a lesser extent, in a subpopulation of intercalated cells. The vacuoles subsequently shrank and disappeared over the course of 60-90 min in the continued presence of the hormone and osmotic gradient. The vacuoles collapsed very slowly after elimination of the osmotic gradient at the peak of the vacuolation response, which implies that these structures are intracellular compartments rather than dilated extracellular spaces. During their formation the vacuoles could be loaded with peritubular (but not luminal) lucifer yellow, which remained trapped within most of these structures well after the dye was removed from the bath (greater than 30 min). These results indicate that most vacuoles that form during ADH-mediated water reabsorption are intracellular, endocytic compartments that communicate with the peritubular space via endocytosis of basolateral cell membrane.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验