Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France.
Space Research Centre, University of Leicester, Leicester, United Kingdom.
Astrobiology. 2021 Apr;21(4):464-480. doi: 10.1089/ast.2020.2292. Epub 2021 Mar 1.
The European Space Agency and Roscosmos' ExoMars rover mission, which is planned to land in the Oxia Planum region, will be dedicated to exobiology studies at the surface and subsurface of Mars. Oxia Planum is a clay-bearing site that has preserved evidence of long-term interaction with water during the Noachian era. Fe/Mg-rich phyllosilicates have previously been shown to occur extensively throughout the landing area. Here, we analyze data from the High Resolution Imaging Science Experiment (HiRISE) and from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instruments onboard NASA's Mars Reconnaissance Orbiter and the Colour and Stereo Surface Imaging System (CaSSIS) onboard ESA's Trace Gas Orbiter to characterize, at a high spatial resolution, the morphological and spectral variability of Oxia Planum's surface deposits. Two main types of bedrocks are identified within the clay-bearing, fractured unit observed throughout the landing site: (1) an orange type in HiRISE correlated with the strongest detections of secondary minerals (dominated by Fe/Mg-rich clay minerals) with, in some locations, an additional spectral absorption near 2.5 μm, suggesting the mixture with an additional mineral, plausibly carbonate or another type of clay mineral; (2) a more bluish bedrock associated with weaker detections of secondary minerals, which exhibits at certain locations a ∼1 μm broad absorption feature consistent with olivine. Coanalysis of the same terrains with the recently acquired CaSSIS images confirms the variability in the color and spectral properties of the fractured unit. Of interest for the ExoMars mission, both types of bedrocks are extensively outcropping in the Oxia Planum region, and the one corresponding to the most intense spectral signals of clay minerals (the primary scientific target) is well exposed within the landing area, including near its center.
欧洲航天局和俄罗斯联邦航天局的 ExoMars 漫游者任务计划在奥西亚平原地区着陆,该任务将致力于火星表面和地下的天体生物学研究。奥西亚平原是一个含有黏土的地点,保存了在诺亚纪时期与水长期相互作用的证据。富含 Fe/Mg 的层状硅酸盐以前已被证明广泛存在于着陆区。在这里,我们分析了美国宇航局火星侦察轨道器上的高分辨率成像科学实验(HiRISE)和紧凑型侦察成像光谱仪火星(CRISM)仪器以及欧洲航天局的痕量气体轨道器上的彩色和立体表面成像系统(CaSSIS)的数据,以高空间分辨率表征奥西亚平原表面沉积物的形态和光谱可变性。在整个着陆点观察到的含黏土、断裂单元中,确定了两种主要类型的基岩:(1)HiRISE 中与次生矿物最强检测相关的橙色类型(主要由富 Fe/Mg 的黏土矿物组成),在某些位置,在 2.5μm 附近存在额外的光谱吸收,表明与额外矿物混合,可能是碳酸盐或另一种类型的黏土矿物;(2)与次生矿物较弱检测相关的更蓝的基岩,在某些位置表现出与橄榄石一致的约 1μm 宽的吸收特征。对同一地形与最近获得的 CaSSIS 图像的共分析证实了断裂单元的颜色和光谱特性的可变性。对 ExoMars 任务感兴趣的是,这两种类型的基岩在奥西亚平原地区广泛出露,与黏土矿物最强光谱信号(主要科学目标)相对应的基岩在着陆区,包括其中心附近,都有很好的暴露。