Suppr超能文献

利用疏水电荷相互作用的 Flash NanoPrecipitation 技术制备高载药量蛋白纳米载体。

Highly-loaded protein nanocarriers prepared by Flash NanoPrecipitation with hydrophobic ion pairing.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States.

Department of Immunology, Duke University School of Medicine, Durham, NC 27708, United States.

出版信息

Int J Pharm. 2021 May 15;601:120397. doi: 10.1016/j.ijpharm.2021.120397. Epub 2021 Feb 26.

Abstract

The efficient encapsulation of therapeutic proteins into delivery vehicles, particularly without loss of function, remains a significant research hurdle. Typical liposomal formulations achieve drug loadings on the order of 3-5% and encapsulation efficiencies around 50%. We demonstrate the encapsulation of model proteins with isoelectric points above and below pH 7 into nanocarriers (NCs) with protein loadings as high as 46% and encapsulation efficiencies above 95%. This is done by combining the continuous nanofabrication process Flash NanoPrecipitation (FNP) with the technique of hydrophobic ion pairing by forming and encapsulating an ionic complex within a nanocarrier stabilized by a block copolymer surface layer. We complex and encapsulate lysozyme with two anionic hydrophobic counterions, sodium oleate and sodium dodecyl sulfate, using either a pre-formed complex or in situ pairing. The strategy successfully forms NCs ~150 nm in diameter and achieves encapsulation efficiencies over 95%. Protein release rate from the NCs in physiological conditions and the bioactivity of released lysozyme are measured, and both are found to vary with the complexing counterion and the protein/counterion ratio used during formulation. Protein release on the time scale of weeks is observed, and up to 100% bioactivity is measured from released lysozyme. 16 quaternary ammonium cationic counterions are tested to encapsulate ovalbumin in 32 formulations. Of these, 19 successfully form ~150 nm NCs with loadings up to 29% and encapsulation efficiencies up to 88%. We divide the formulations into four regimes and identify chemical factors responsible for the success or failure of a given counterion to formulate NCs with the desirable size, loading, and encapsulation efficiency. A successful ovalbumin NC formulation was then tested in vivo in a mouse nasal vaccine model and found to induce a higher titer of OVA-specific IgG than unencapsulated ovalbumin. Taken together, these findings suggest that Flash NanoPrecipitation with hydrophobic ion pairing is an attractive platform for encapsulating high molecular weight proteins into NCs. In particular, the ability to tune protein release rate by varying the counterion or protein/counterion ratio used during formulation is a useful feature.

摘要

将治疗性蛋白质有效地封装到输送载体中,特别是在不损失其功能的情况下,仍然是一个重大的研究难题。典型的脂质体制剂的药物载药量约为 3-5%,封装效率约为 50%。我们展示了将等电点高于和低于 pH7 的模型蛋白封装到纳米载体 (NCs) 中,其蛋白载药量高达 46%,封装效率高于 95%。这是通过将连续纳米制造工艺 Flash NanoPrecipitation (FNP) 与疏水离子对形成和封装技术相结合来实现的,该技术是在由嵌段共聚物表面层稳定的纳米载体中形成并封装离子复合物。我们使用两种阴离子疏水分子,油酸钠和十二烷基硫酸钠,将溶菌酶与两种阴离子疏水分子形成复合物,并使用预形成的复合物或原位配对的方法将其包裹。该策略成功地形成了直径约 150nm 的 NCs,并实现了超过 95%的封装效率。在生理条件下测量了 NCs 中蛋白质的释放速率以及释放的溶菌酶的生物活性,发现这两个参数都随复合物的抗衡离子和制剂中使用的蛋白质/抗衡离子比而变化。在数周的时间尺度上观察到蛋白质的释放,并且从释放的溶菌酶中测量到高达 100%的生物活性。我们测试了 16 种季铵阳离子抗衡离子来包裹卵清蛋白,共 32 种制剂。其中,有 19 种成功地形成了负载量高达 29%、封装效率高达 88%的~150nm NCs。我们将这些制剂分为四个区域,并确定了导致特定抗衡离子成功或失败的化学因素,这些因素决定了 NCs 的理想尺寸、负载量和封装效率。然后,我们在小鼠鼻腔疫苗模型中对成功的卵清蛋白 NC 制剂进行了体内测试,发现它诱导的 OVA 特异性 IgG 滴度高于未包裹的卵清蛋白。总之,这些发现表明,利用疏水离子对形成 Flash NanoPrecipitation 是将高分子量蛋白质封装到 NCs 中的一种有吸引力的平台。特别是通过改变制剂过程中使用的抗衡离子或蛋白质/抗衡离子比来调节蛋白质释放速率的能力是一个有用的特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验