Suppr超能文献

脂质纳米颗粒介导的 Cas9 mRNA 和单链向导 RNA 的共递送达实现了. 的肝脏特异性体内基因组编辑。

Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of .

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA 02155.

Broad Institute of MIT and Harvard, Cambridge, MA 02142.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2020401118.

Abstract

Loss-of-function mutations in Angiopoietin-like 3 () are associated with lowered blood lipid levels, making an attractive therapeutic target for the treatment of human lipoprotein metabolism disorders. In this study, we developed a lipid nanoparticle delivery platform carrying Cas9 messenger RNA (mRNA) and guide RNA for CRISPR-Cas9-based genome editing of in vivo. This system mediated specific and efficient gene knockdown in the liver of wild-type C57BL/6 mice, resulting in profound reductions in serum ANGPTL3 protein, low density lipoprotein cholesterol, and triglyceride levels. Our delivery platform is significantly more efficient than the FDA-approved MC-3 LNP, the current gold standard. No evidence of off-target mutagenesis was detected at any of the nine top-predicted sites, and no evidence of toxicity was detected in the liver. Importantly, the therapeutic effect of genome editing was stable for at least 100 d after a single dose administration. This study highlights the potential of LNP-mediated delivery as a specific, effective, and safe platform for Cas9-based therapeutics.

摘要

ANGPTL3 基因的功能丧失性突变与降低血脂水平有关,使其成为治疗人类脂蛋白代谢紊乱的有吸引力的治疗靶点。在这项研究中,我们开发了一种携带 Cas9 信使 RNA(mRNA)和指导 RNA 的脂质纳米颗粒(LNP)递送平台,用于 CRISPR-Cas9 介导的体内基因编辑。该系统介导了野生型 C57BL/6 小鼠肝脏中特定和有效的基因敲低,导致血清 ANGPTL3 蛋白、低密度脂蛋白胆固醇和甘油三酯水平的显著降低。我们的递送平台比 FDA 批准的 MC-3 LNP(目前的金标准)效率更高。在九个预测的靶位点中,没有检测到任何脱靶突变的证据,在肝脏中也没有检测到毒性的证据。重要的是,单次给药后,基因编辑的治疗效果至少稳定 100 天。这项研究强调了 LNP 介导的递送作为 Cas9 治疗的一种特异性、有效性和安全性平台的潜力。

相似文献

2
Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles.
Adv Mater. 2019 Aug;31(33):e1902575. doi: 10.1002/adma.201902575. Epub 2019 Jun 19.
4
A Versatile Nonviral Delivery System for Multiplex Gene-Editing in the Liver.
Adv Mater. 2020 Nov;32(46):e2003537. doi: 10.1002/adma.202003537. Epub 2020 Oct 14.
5
Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol.
Atherosclerosis. 2018 Jan;268:196-206. doi: 10.1016/j.atherosclerosis.2017.08.031. Epub 2017 Sep 21.
6
Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo.
Eur J Pharm Biopharm. 2024 Mar;196:114207. doi: 10.1016/j.ejpb.2024.114207. Epub 2024 Feb 6.
7
Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA.
Angew Chem Int Ed Engl. 2017 Jan 19;56(4):1059-1063. doi: 10.1002/anie.201610209. Epub 2016 Dec 16.
8
Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
Acc Chem Res. 2019 Jun 18;52(6):1555-1564. doi: 10.1021/acs.accounts.9b00106. Epub 2019 May 17.
9

引用本文的文献

1
Muscle-targeting LNP vaccines enable potent immune responses against varicella zoster virus.
Drug Deliv Transl Res. 2025 Sep 1. doi: 10.1007/s13346-025-01961-2.
2
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
3
Positron Emission Tomography-Based Pharmacokinetics of mRNA-Lipid Nanoparticles: A Study Quantifying the ApoE and Macrophage Contribution.
ACS Appl Mater Interfaces. 2025 Aug 13;17(32):45625-45639. doi: 10.1021/acsami.5c14143. Epub 2025 Aug 3.
4
Nanotechnology-based mRNA vaccines.
Nat Rev Methods Primers. 2023;3(1). doi: 10.1038/s43586-023-00246-7. Epub 2023 Aug 17.
5
CRISPR-based functional genomics tools in vertebrate models.
Exp Mol Med. 2025 Jul;57(7):1355-1372. doi: 10.1038/s12276-025-01514-0. Epub 2025 Jul 31.
6
Integrating New Technologies in Lipidology: A Comprehensive Review.
J Clin Med. 2025 Jul 14;14(14):4984. doi: 10.3390/jcm14144984.
7
8
Swine reporter model for preclinical evaluation and characterization of gene delivery vectors.
bioRxiv. 2025 Jun 14:2025.06.13.659546. doi: 10.1101/2025.06.13.659546.
9
SLC1A5-dependent glutamine uptake in hepatocytes promotes liver regeneration.
Hepatol Commun. 2025 Jul 14;9(8). doi: 10.1097/HC9.0000000000000742. eCollection 2025 Aug 1.

本文引用的文献

1
Engineered materials for in vivo delivery of genome-editing machinery.
Nat Rev Mater. 2019 Nov;4:726-737. doi: 10.1038/s41578-019-0145-9. Epub 2019 Oct 4.
2
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing.
Nat Nanotechnol. 2020 Apr;15(4):313-320. doi: 10.1038/s41565-020-0669-6. Epub 2020 Apr 6.
3
Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia.
N Engl J Med. 2020 Apr 16;382(16):1520-1530. doi: 10.1056/NEJMoa1913805. Epub 2020 Mar 18.
4
Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol.
N Engl J Med. 2020 Apr 16;382(16):1507-1519. doi: 10.1056/NEJMoa1912387. Epub 2020 Mar 18.
5
The promise and challenge of therapeutic genome editing.
Nature. 2020 Feb;578(7794):229-236. doi: 10.1038/s41586-020-1978-5. Epub 2020 Feb 12.
6
Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis.
Nat Nanotechnol. 2020 Jan;15(1):41-46. doi: 10.1038/s41565-019-0600-1. Epub 2020 Jan 6.
7
The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs.
Nat Nanotechnol. 2019 Dec;14(12):1084-1087. doi: 10.1038/s41565-019-0591-y.
8
Nonviral Nanoparticles for CRISPR-Based Genome Editing: Is It Just a Simple Adaption of What Have Been Developed for Nucleic Acid Delivery?
Biomacromolecules. 2019 Sep 9;20(9):3333-3339. doi: 10.1021/acs.biomac.9b00783. Epub 2019 Aug 7.
9
Inhibition of Angiopoietin-Like Protein 3 With a Monoclonal Antibody Reduces Triglycerides in Hypertriglyceridemia.
Circulation. 2019 Aug 6;140(6):470-486. doi: 10.1161/CIRCULATIONAHA.118.039107. Epub 2019 Jun 27.
10
Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles.
Adv Mater. 2019 Aug;31(33):e1902575. doi: 10.1002/adma.201902575. Epub 2019 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验