Suppr超能文献

深度学习方法识别街景图像中的不健康广告。

A deep learning approach to identify unhealthy advertisements in street view images.

机构信息

Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, Liverpool, UK.

L3S Research Center, Leibniz University Hannover, Hannover, Germany.

出版信息

Sci Rep. 2021 Mar 1;11(1):4884. doi: 10.1038/s41598-021-84572-4.

Abstract

While outdoor advertisements are common features within towns and cities, they may reinforce social inequalities in health. Vulnerable populations in deprived areas may have greater exposure to fast food, gambling and alcohol advertisements, which may encourage their consumption. Understanding who is exposed and evaluating potential policy restrictions requires a substantial manual data collection effort. To address this problem we develop a deep learning workflow to automatically extract and classify unhealthy advertisements from street-level images. We introduce the Liverpool [Formula: see text] Street View (LIV360SV) dataset for evaluating our workflow. The dataset contains 25,349, 360 degree, street-level images collected via cycling with a GoPro Fusion camera, recorded Jan 14th-18th 2020. 10,106 advertisements were identified and classified as food (1335), alcohol (217), gambling (149) and other (8405). We find evidence of social inequalities with a larger proportion of food advertisements located within deprived areas and those frequented by students. Our project presents a novel implementation for the incidental classification of street view images for identifying unhealthy advertisements, providing a means through which to identify areas that can benefit from tougher advertisement restriction policies for tackling social inequalities.

摘要

虽然户外广告在城镇中很常见,但它们可能会加剧健康方面的社会不平等。贫困地区的弱势群体可能更容易接触到快餐、赌博和酒类广告,这可能会鼓励他们消费。了解谁会接触到这些广告,并评估潜在的政策限制,需要进行大量的手动数据收集工作。为了解决这个问题,我们开发了一种深度学习工作流程,以便从街景图像中自动提取和分类不健康的广告。我们引入了利物浦[公式:见文本]街景视图(LIV360SV)数据集来评估我们的工作流程。该数据集包含 25349 张通过骑自行车用 GoPro Fusion 相机拍摄的 360 度街景图像,拍摄于 2020 年 1 月 14 日至 18 日。共识别出 10106 个广告,并将其分类为食品(1335 个)、酒精(217 个)、赌博(149 个)和其他(8405 个)。我们发现了社会不平等的证据,即更多的食品广告位于贫困地区和学生经常光顾的地区。我们的项目提出了一种新颖的街景图像偶然分类方法,用于识别不健康广告,为确定需要更严格广告限制政策的地区提供了一种手段,以解决社会不平等问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3af/7921635/2bff0305933d/41598_2021_84572_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验