Timofejeva Inga, Telksnys Tadas, Navickas Zenonas, Marcinkevicius Romas, Ragulskis Minvydas
Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas, LT-51368 Lithuania.
Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas, LT-51368 Lithuania.
Adv Differ Equ. 2021;2021(1):133. doi: 10.1186/s13662-021-03300-4. Epub 2021 Feb 25.
A meta-model of diffusively coupled Lotka-Volterra systems used to model various biomedical phenomena is considered in this paper. Necessary and sufficient conditions for the existence of th order solitary solutions are derived via a modified inverse balancing technique. It is shown that as the highest possible solitary solution order is increased, the number of nonzero solution parameter values remains constant for solitary solutions of order . Analytical and computational experiments are used to illustrate the obtained results.
本文考虑了一个用于对各种生物医学现象进行建模的扩散耦合Lotka-Volterra系统的元模型。通过一种改进的逆平衡技术推导了第(n)阶孤立解存在的充要条件。结果表明,随着可能的最高孤立解阶数增加,对于(n)阶孤立解,非零解参数值的数量保持不变。通过分析和计算实验对所得结果进行了说明。