Li Hongxing, Yin Meisong, Li Xianglin, Mo Rong
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan, 411105, P. R. China.
Hunan First Normal University, No.1015, Fenglin Road (the 3rd), Yuelu District, Changsha, Hunan, 410205, P. R. China.
ChemSusChem. 2021 Jun 8;14(11):2331-2340. doi: 10.1002/cssc.202100363. Epub 2021 Mar 10.
Efficient charge transfer and excellent surface water oxidation kinetics are key factors in determining the photoelectrochemical (PEC) water splitting performance in photoelectrodes. Herein, a bilayer TiO /α-Fe O nanorod (NR) arrays photoanode was prepared with deposited Cu-doped NiO (Cu : NiO ) hole transport layer (HTL) and Co-Pi oxygen evolution reaction (OER) cocatalyst for PEC water oxidation. The hierarchical TiO /α-Fe O composite obtained by a secondary hydrothermal process exhibited an inapparent bilayer structure by embedding the underlayer TiO NR arrays at the bottom part of the post-grown α-Fe O NR arrays. The underlayer TiO NRs acted as an effective shuttling pathway for transferring photoelectrons generated in the upper hematite light absorber layer. A p-type inter-Cu : NiO HTL was introduced to form a build-in p-n electric field between Cu : NiO and α-Fe O NRs, which improved the hole extraction from α-Fe O to Co-Pi OER catalyst. As expected, the as-engineered TiO /α-Fe O /Cu : NiO /Co-Pi photoanode displayed an excellent photocurrent density of 2.43 mA cm at 1.23 V versus the reversible hydrogen electrode (V ), up to 4.05 and 2.23 times greater than those of the bare α-Fe O (0.60 mA cm ) and TiO /α-Fe O , respectively. The results demonstrate that the bottom-up engineering of electron-hole transport channels and cocatalyst modification is an attractive maneuver to enhance the PEC water oxidation activity in hematite and other photoanodes.
高效的电荷转移和优异的表面水氧化动力学是决定光电极中光电化学(PEC)水分解性能的关键因素。在此,制备了一种双层TiO₂/α-Fe₂O₃纳米棒(NR)阵列光阳极,其具有沉积的Cu掺杂NiO(Cu:NiO)空穴传输层(HTL)和用于PEC水氧化的Co-Pi析氧反应(OER)助催化剂。通过二次水热法获得的分级TiO₂/α-Fe₂O₃复合材料通过将下层TiO₂ NR阵列嵌入后生长的α-Fe₂O₃ NR阵列的底部而呈现出不明显的双层结构。下层TiO₂ NR充当有效的穿梭通道,用于转移在上层赤铁矿光吸收层中产生的光电子。引入p型的Cu:NiO HTL以在Cu:NiO和α-Fe₂O₃ NR之间形成内置的p-n电场,这改善了从α-Fe₂O₃到Co-Pi OER催化剂的空穴提取。正如预期的那样,所设计的TiO₂/α-Fe₂O₃/Cu:NiO/Co-Pi光阳极在相对于可逆氢电极(V)为1.23 V时显示出2.43 mA cm⁻²的优异光电流密度,分别比裸α-Fe₂O₃(0.60 mA cm⁻²)和TiO₂/α-Fe₂O₃高出4.05倍和2.23倍。结果表明,电子-空穴传输通道的自下而上工程和助催化剂改性是提高赤铁矿和其他光阳极中PEC水氧化活性的有吸引力的策略。