Suppr超能文献

三种机器学习算法及其在探索低风险女性原发性剖宫产相关风险因素中的应用:一篇方法学论文。

Three machine learning algorithms and their utility in exploring risk factors associated with primary cesarean section in low-risk women: A methods paper.

作者信息

Clark Rebecca R S, Hou Jintong

机构信息

Center for Health Outcomes and Policy Research, Leonard Davis Institute of Health Economics, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA.

Drexel University School of Public Health, Philadelphia, Pennsylvania, USA.

出版信息

Res Nurs Health. 2021 Jun;44(3):559-570. doi: 10.1002/nur.22122. Epub 2021 Mar 2.

Abstract

Machine learning, a branch of artificial intelligence, is increasingly used in health research, including nursing and maternal outcomes research. Machine learning algorithms are complex and involve statistics and terminology that are not common in health research. The purpose of this methods paper is to describe three machine learning algorithms in detail and provide an example of their use in maternal outcomes research. The three algorithms, classification and regression trees, least absolute shrinkage and selection operator, and random forest, may be used to understand risk groups, select variables for a model, and rank variables' contribution to an outcome, respectively. While machine learning has plenty to contribute to health research, it also has some drawbacks, and these are discussed as well. To provide an example of the different algorithms' function, they were used on a completed cross-sectional study examining the association of oxytocin total dose exposure with primary cesarean section. The results of the algorithms are compared to what was done or found using more traditional methods.

摘要

机器学习作为人工智能的一个分支,在健康研究中越来越多地被使用,包括护理和孕产妇结局研究。机器学习算法复杂,涉及健康研究中不常见的统计数据和术语。本方法论文的目的是详细描述三种机器学习算法,并提供它们在孕产妇结局研究中的应用示例。这三种算法,即分类与回归树、最小绝对收缩与选择算子以及随机森林,可分别用于了解风险群体、为模型选择变量以及对变量对结局的贡献进行排序。虽然机器学习对健康研究有很大贡献,但它也有一些缺点,本文也将对此进行讨论。为了提供不同算法功能的示例,我们将它们应用于一项已完成的横断面研究,该研究考察了催产素总剂量暴露与首次剖宫产之间的关联。将算法的结果与使用更传统方法所做的或所发现的结果进行比较。

相似文献

2
The Role of Oxytocin in Primary Cesarean Birth Among Low-Risk Women.
J Midwifery Womens Health. 2021 Jan;66(1):54-61. doi: 10.1111/jmwh.13157. Epub 2020 Sep 15.
3
4
Influence of Maternal Obesity on Labor Induction: A Systematic Review and Meta-Analysis.
J Midwifery Womens Health. 2019 Jan;64(1):55-67. doi: 10.1111/jmwh.12935. Epub 2019 Jan 16.
5
Maternal and system characteristics, oxytocin administration practices, and cesarean birth rate.
Birth. 2020 Jun;47(2):220-226. doi: 10.1111/birt.12482. Epub 2020 Jan 30.
6
Can oxytocin augmentation modify the risk of epidural analgesia by maternal age in cesarean sections?
Acta Obstet Gynecol Scand. 2018 Jul;97(7):872-879. doi: 10.1111/aogs.13341. Epub 2018 Apr 10.
8
Intravenous oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery: a systematic review and meta-analysis.
Am J Obstet Gynecol. 2021 Sep;225(3):250.e1-250.e38. doi: 10.1016/j.ajog.2021.04.258. Epub 2021 May 4.
9
Maternal body mass index and oxytocin exposure in nulliparous women: is there an interaction associated with maternal and neonatal morbidities?
J Matern Fetal Neonatal Med. 2018 Aug;31(15):2013-2018. doi: 10.1080/14767058.2017.1334046. Epub 2017 Jun 6.

引用本文的文献

1
A SuperLearner approach for predicting diabetic kidney disease upon the initial diagnosis of T2DM in hospital.
BMC Med Inform Decis Mak. 2025 Mar 26;25(1):148. doi: 10.1186/s12911-025-02977-x.
2
Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications.
Front Endocrinol (Lausanne). 2023 May 19;14:1130139. doi: 10.3389/fendo.2023.1130139. eCollection 2023.
3
Analysis of Publication Activity and Research Trends in the Field of AI Medical Applications: Network Approach.
Int J Environ Res Public Health. 2023 Mar 30;20(7):5335. doi: 10.3390/ijerph20075335.
4
A Semi-Supervised Machine Learning Approach in Predicting High-Risk Pregnancies in the Philippines.
Diagnostics (Basel). 2022 Nov 14;12(11):2782. doi: 10.3390/diagnostics12112782.

本文引用的文献

1
Births: Final Data for 2018.
Natl Vital Stat Rep. 2019 Nov;68(13):1-47.
2
The importance of depression during pregnancy.
JBRA Assist Reprod. 2020 Oct 6;24(4):405-410. doi: 10.5935/1518-0557.20200010.
3
Artificial intelligence in healthcare: An essential guide for health leaders.
Healthc Manage Forum. 2020 Jan;33(1):10-18. doi: 10.1177/0840470419873123. Epub 2019 Sep 24.
4
Knowledge Discovery With Machine Learning for Hospital-Acquired Catheter-Associated Urinary Tract Infections.
Comput Inform Nurs. 2020 Jan;38(1):28-35. doi: 10.1097/CIN.0000000000000562.
5
A decision support system for predicting the treatment of ectopic pregnancies.
Int J Med Inform. 2019 Sep;129:198-204. doi: 10.1016/j.ijmedinf.2019.06.002. Epub 2019 Jun 8.
6
Prediction model development of late-onset preeclampsia using machine learning-based methods.
PLoS One. 2019 Aug 23;14(8):e0221202. doi: 10.1371/journal.pone.0221202. eCollection 2019.
7
Leveraging Electronic Health Records to Learn Progression Path for Severe Maternal Morbidity.
Stud Health Technol Inform. 2019 Aug 21;264:148-152. doi: 10.3233/SHTI190201.
8
Learning to Identify Severe Maternal Morbidity from Electronic Health Records.
Stud Health Technol Inform. 2019 Aug 21;264:143-147. doi: 10.3233/SHTI190200.
9
A machine learning approach to investigate potential risk factors for gastroschisis in California.
Birth Defects Res. 2019 Mar 1;111(4):212-221. doi: 10.1002/bdr2.1441. Epub 2018 Dec 26.
10
The Association between Maternal Height, Body Mass Index, and Perinatal Outcomes.
Am J Perinatol. 2019 May;36(6):632-640. doi: 10.1055/s-0038-1673395. Epub 2018 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验