Suppr超能文献

基于柔性体分区的可见光红外行人再识别对抗学习

Flexible Body Partition-Based Adversarial Learning for Visible Infrared Person Re-Identification.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4676-4687. doi: 10.1109/TNNLS.2021.3059713. Epub 2022 Aug 31.

Abstract

Person re-identification (Re-ID) aims to retrieve images of the same person across disjoint camera views. Most Re-ID studies focus on pedestrian images captured by visible cameras, without considering the infrared images obtained in the dark scenarios. Person retrieval between visible and infrared modalities is of great significance to public security. Current methods usually train a model to extract global feature descriptors and obtain discriminative representations for visible infrared person Re-ID (VI-REID). Nevertheless, they ignore the detailed information of heterogeneous pedestrian images, which affects the performance of Re-ID. In this article, we propose a flexible body partition (FBP) model-based adversarial learning method (FBP-AL) for VI-REID. To learn more fine-grained information, FBP model is exploited to automatically distinguish part representations according to the feature maps of pedestrian images. Specially, we design a modality classifier and introduce adversarial learning which attempts to discriminate features between visible and infrared modality. Adaptive weighting-based representation learning and threefold triplet loss-based metric learning compete with modality classification to obtain more effective modality-sharable features, thus shrinking the cross-modality gap and enhancing the feature discriminability. Extensive experimental results on two cross-modality person Re-ID data sets, i.e., SYSU-MM01 and RegDB, exhibit the superiority of the proposed method compared with the state-of-the-art solutions.

摘要

人体重识别(Re-ID)旨在跨不相交的摄像机视角检索同一人的图像。大多数 Re-ID 研究都集中在可见光摄像机捕获的行人图像上,而不考虑在黑暗场景中获得的红外图像。可见光和红外模态之间的人员检索对公共安全具有重要意义。当前的方法通常训练一个模型来提取全局特征描述符,并为可见红外人员 Re-ID(VI-REID)获得有区别的表示。然而,它们忽略了异构行人图像的详细信息,这影响了 Re-ID 的性能。在本文中,我们提出了一种基于灵活体分割(FBP)模型的对抗学习方法(FBP-AL)用于 VI-REID。为了学习更精细的信息,利用 FBP 模型根据行人图像的特征图自动区分部分表示。具体来说,我们设计了一个模态分类器,并引入了对抗学习,试图在可见和红外模态之间区分特征。基于自适应加权的表示学习和三重态损失的度量学习与模态分类竞争,以获得更有效的模态共享特征,从而缩小跨模态差距,增强特征可区分性。在两个跨模态人员 Re-ID 数据集,即 SYSU-MM01 和 RegDB 上进行的广泛实验结果表明,与最先进的解决方案相比,所提出的方法具有优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验