Suppr超能文献

从同质地到异质地:RGB-红外人像再识别的无监督学习。

Homogeneous-to-Heterogeneous: Unsupervised Learning for RGB-Infrared Person Re-Identification.

出版信息

IEEE Trans Image Process. 2021;30:6392-6407. doi: 10.1109/TIP.2021.3092578. Epub 2021 Jul 14.

Abstract

RGB-Infrared (RGB-IR) cross-modality person re-identification (re-ID) is attracting more and more attention due to requirements for 24-h scene surveillance. However, the high cost of labeling person identities of an RGB-IR dataset largely limits the scalability of supervised models in real-world scenarios. In this paper, we study the unsupervised RGB-IR person re-ID problem (or briefly uRGB-IR re-ID) in which no identity annotations are available in RGB-IR cross-modality datasets. Considering that intra-modality (i.e., RGB-RGB or IR-IR) re-ID is much easier than cross-modality re-ID and can provide shared knowledge for RGB-IR re-ID, we propose a two-stage method to solve the uRGB-IR re-ID, namely homogeneous-to-heterogeneous learning. In the first stage, the unsupervised self-learning method is conducted to learn the intra-modality feature representation and to generate the pseudo-labeled identities of person images separately for each modality. In the second stage, heterogeneous learning is used to learn a shared discriminative feature representation by distilling the knowledge from intra-modality pseudo-labels, to align two modalities via a modality-based consistent learning module, and finally to target modality-invariant learning via a pseudo-labeled positive instance selection module. With the use of homogeneous-to-heterogeneous learning, the proposed unsupervised framework greatly reduces the modality gap and thus learns a robust feature representation against RGB and infrared modalities, leading to promising accuracy. We also propose a novel cross-modality re-ranking approach that includes a self-modality search and a cycle-modality search to tailor the uRGB-IR re-ID. Unlike conventional re-ranking, the proposed re-ranking method takes a modality-based constraint into re-ranking and thus can select more reliable nearest neighbors, which greatly improves uRGB-IR re-ID. The experimental results demonstrate the superiority of our approach on the SYSU-MM01 and RegDB datasets.

摘要

RGB-红外(RGB-IR)跨模态人员重新识别(re-ID)由于需要 24 小时场景监控,因此越来越受到关注。然而,RGB-IR 数据集的人员身份标记成本高,在很大程度上限制了监督模型在实际场景中的可扩展性。在本文中,我们研究了无监督 RGB-IR 人员重新识别问题(简称 uRGB-IR re-ID),即在 RGB-IR 跨模态数据集中没有身份注释。考虑到同模态(即 RGB-RGB 或 IR-IR)重新识别比跨模态重新识别容易得多,并且可以为 RGB-IR 重新识别提供共享知识,我们提出了一种两阶段方法来解决 uRGB-IR re-ID,即同态到异态学习。在第一阶段,进行无监督自学习方法,以学习同模态特征表示,并分别为每个模态生成人员图像的伪标记身份。在第二阶段,使用异态学习通过从同模态伪标签中提取知识来学习共享判别特征表示,通过基于模态的一致学习模块对齐两个模态,最后通过伪标记正例选择模块实现目标模态不变学习。通过同态到异态学习,所提出的无监督框架大大减小了模态差距,从而学习了对 RGB 和红外模态具有鲁棒性的特征表示,从而实现了有前景的准确性。我们还提出了一种新颖的跨模态重新排序方法,包括自模态搜索和循环模态搜索,以适应 uRGB-IR re-ID。与传统的重新排序方法不同,所提出的重新排序方法将基于模态的约束纳入重新排序中,从而可以选择更可靠的最近邻,这大大提高了 uRGB-IR re-ID 的性能。实验结果表明,我们的方法在 SYSU-MM01 和 RegDB 数据集上具有优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验