Suppr超能文献

Adaptive Transition Probability Matrix Learning for Multiview Spectral Clustering.

作者信息

Chen Yongyong, Xiao Xiaolin, Hua Zhongyun, Zhou Yicong

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4712-4726. doi: 10.1109/TNNLS.2021.3059874. Epub 2022 Aug 31.

Abstract

Multiview clustering as an important unsupervised method has been gathering a great deal of attention. However, most multiview clustering methods exploit the self-representation property to capture the relationship among data, resulting in high computation cost in calculating the self-representation coefficients. In addition, they usually employ different regularizers to learn the representation tensor or matrix from which a transition probability matrix is constructed in a separate step, such as the one proposed by Wu et al.. Thus, an optimal transition probability matrix cannot be guaranteed. To solve these issues, we propose a unified model for multiview spectral clustering by directly learning an adaptive transition probability matrix (MCAM), rather than an individual representation matrix of each view. Different from the one proposed by Wu et al., MCAM utilizes the one-step strategy to directly learn the transition probability matrix under the robust principal component analysis framework. Unlike existing methods using the absolute symmetrization operation to guarantee the nonnegativity and symmetry of the affinity matrix, the transition probability matrix learned from MCAM is nonnegative and symmetric without any postprocessing. An alternating optimization algorithm is designed based on the efficient alternating direction method of multipliers. Extensive experiments on several real-world databases demonstrate that the proposed method outperforms the state-of-the-art methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验