Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
Curr Biol. 2021 Apr 26;31(8):1711-1725.e5. doi: 10.1016/j.cub.2021.01.093. Epub 2021 Mar 1.
As a result of developmental synapse formation, the presynaptic neurotransmitter release machinery becomes accurately matched with postsynaptic neurotransmitter receptors. Trans-synaptic signaling is executed through cell adhesion proteins such as Neurexin::Neuroligin pairs but also through diffusible and cytoplasmic signals. How exactly pre-post coordination is ensured in vivo remains largely enigmatic. Here, we identified a "molecular choreography" coordinating pre- with postsynaptic assembly during the developmental formation of Drosophila neuromuscular synapses. Two presynaptic Neurexin-binding scaffold proteins, Syd-1 and Spinophilin (Spn), spatio-temporally coordinated pre-post assembly in conjunction with two postsynaptically operating, antagonistic Neuroligin species: Nlg1 and Nlg2. The Spn/Nlg2 module promoted active zone (AZ) maturation by driving the accumulation of AZ scaffold proteins critical for synaptic vesicle release. Simultaneously, these regulators restricted postsynaptic glutamate receptor incorporation. Both functions of the Spn/Nlg2 module were directly antagonized by Syd-1/Nlg1. Nlg1 and Nlg2 also had divergent effects on Nrx-1 in vivo motility. Concerning diffusible signals, Spn and Syd-1 antagonistically controlled the levels of Munc13-family protein Unc13B at nascent AZs, whose release function facilitated glutamate receptor incorporation at assembling postsynaptic specializations. As a result, we here provide direct in vivo evidence illustrating how a highly regulative and interleaved communication between cell adhesion protein signaling complexes and diffusible signals allows for a precise coordination of pre- with postsynaptic assembly. It will be interesting to analyze whether this logic also transfers to plasticity processes.
由于发育中的突触形成,突触前神经递质释放机制与突触后神经递质受体变得精确匹配。突触间信号传递是通过神经连接蛋白::神经黏连蛋白对等细胞黏附蛋白以及可扩散和细胞质信号来执行的。在体内,前-后协调是如何精确保证的在很大程度上仍然是个谜。在这里,我们确定了一种“分子舞蹈”,它在果蝇肌神经突触的发育形成过程中协调了前突触和后突触的组装。两种突触前神经连接蛋白结合支架蛋白 Syd-1 和 Spinophilin(Spn)与两种在后突触起作用的拮抗神经黏连蛋白物种:Nlg1 和 Nlg2 一起在时空上协调前-后组装。Spn/Nlg2 模块通过驱动对突触小泡释放至关重要的 AZ 支架蛋白的积累来促进活性区(AZ)成熟。同时,这些调节剂限制了突触后谷氨酸受体的掺入。Spn/Nlg2 模块的这两个功能都直接受到 Syd-1/Nlg1 的拮抗作用。Nlg1 和 Nlg2 也对活体中的 Nrx-1 运动有不同的影响。关于可扩散信号,Spn 和 Syd-1 拮抗地控制了新生 AZ 中 Munc13 家族蛋白 Unc13B 的水平,其释放功能促进了谷氨酸受体在组装的突触后特化中的掺入。因此,我们在这里提供了直接的体内证据,说明了细胞黏附蛋白信号复合物和可扩散信号之间的高度调节和交织的通信如何允许前-后突触组装的精确协调。分析这种逻辑是否也适用于可塑性过程将是很有趣的。