Suppr超能文献

两个神经连接素之间的拮抗相互作用协调了突触前和突触后的组装。

Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly.

机构信息

Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.

Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.

出版信息

Curr Biol. 2021 Apr 26;31(8):1711-1725.e5. doi: 10.1016/j.cub.2021.01.093. Epub 2021 Mar 1.

Abstract

As a result of developmental synapse formation, the presynaptic neurotransmitter release machinery becomes accurately matched with postsynaptic neurotransmitter receptors. Trans-synaptic signaling is executed through cell adhesion proteins such as Neurexin::Neuroligin pairs but also through diffusible and cytoplasmic signals. How exactly pre-post coordination is ensured in vivo remains largely enigmatic. Here, we identified a "molecular choreography" coordinating pre- with postsynaptic assembly during the developmental formation of Drosophila neuromuscular synapses. Two presynaptic Neurexin-binding scaffold proteins, Syd-1 and Spinophilin (Spn), spatio-temporally coordinated pre-post assembly in conjunction with two postsynaptically operating, antagonistic Neuroligin species: Nlg1 and Nlg2. The Spn/Nlg2 module promoted active zone (AZ) maturation by driving the accumulation of AZ scaffold proteins critical for synaptic vesicle release. Simultaneously, these regulators restricted postsynaptic glutamate receptor incorporation. Both functions of the Spn/Nlg2 module were directly antagonized by Syd-1/Nlg1. Nlg1 and Nlg2 also had divergent effects on Nrx-1 in vivo motility. Concerning diffusible signals, Spn and Syd-1 antagonistically controlled the levels of Munc13-family protein Unc13B at nascent AZs, whose release function facilitated glutamate receptor incorporation at assembling postsynaptic specializations. As a result, we here provide direct in vivo evidence illustrating how a highly regulative and interleaved communication between cell adhesion protein signaling complexes and diffusible signals allows for a precise coordination of pre- with postsynaptic assembly. It will be interesting to analyze whether this logic also transfers to plasticity processes.

摘要

由于发育中的突触形成,突触前神经递质释放机制与突触后神经递质受体变得精确匹配。突触间信号传递是通过神经连接蛋白::神经黏连蛋白对等细胞黏附蛋白以及可扩散和细胞质信号来执行的。在体内,前-后协调是如何精确保证的在很大程度上仍然是个谜。在这里,我们确定了一种“分子舞蹈”,它在果蝇肌神经突触的发育形成过程中协调了前突触和后突触的组装。两种突触前神经连接蛋白结合支架蛋白 Syd-1 和 Spinophilin(Spn)与两种在后突触起作用的拮抗神经黏连蛋白物种:Nlg1 和 Nlg2 一起在时空上协调前-后组装。Spn/Nlg2 模块通过驱动对突触小泡释放至关重要的 AZ 支架蛋白的积累来促进活性区(AZ)成熟。同时,这些调节剂限制了突触后谷氨酸受体的掺入。Spn/Nlg2 模块的这两个功能都直接受到 Syd-1/Nlg1 的拮抗作用。Nlg1 和 Nlg2 也对活体中的 Nrx-1 运动有不同的影响。关于可扩散信号,Spn 和 Syd-1 拮抗地控制了新生 AZ 中 Munc13 家族蛋白 Unc13B 的水平,其释放功能促进了谷氨酸受体在组装的突触后特化中的掺入。因此,我们在这里提供了直接的体内证据,说明了细胞黏附蛋白信号复合物和可扩散信号之间的高度调节和交织的通信如何允许前-后突触组装的精确协调。分析这种逻辑是否也适用于可塑性过程将是很有趣的。

相似文献

1
Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly.
Curr Biol. 2021 Apr 26;31(8):1711-1725.e5. doi: 10.1016/j.cub.2021.01.093. Epub 2021 Mar 1.
2
Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly.
Nat Neurosci. 2012 Sep;15(9):1219-26. doi: 10.1038/nn.3183. Epub 2012 Aug 5.
6
Neuroligin 2 is required for synapse development and function at the Drosophila neuromuscular junction.
J Neurosci. 2011 Jan 12;31(2):687-99. doi: 10.1523/JNEUROSCI.3854-10.2011.
7
Neurexin, Neuroligin and Wishful Thinking coordinate synaptic cytoarchitecture and growth at neuromuscular junctions.
Mol Cell Neurosci. 2017 Jan;78:9-24. doi: 10.1016/j.mcn.2016.11.004. Epub 2016 Nov 10.
9
Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.
Mol Cell Neurosci. 2014 Jul;61:241-54. doi: 10.1016/j.mcn.2014.07.005. Epub 2014 Jul 24.
10
Neurexin in embryonic Drosophila neuromuscular junctions.
PLoS One. 2010 Jun 14;5(6):e11115. doi: 10.1371/journal.pone.0011115.

引用本文的文献

1
Resolving synaptic events using subsynaptically targeted GCaMP8 variants.
bioRxiv. 2025 Jun 19:2025.06.19.660577. doi: 10.1101/2025.06.19.660577.
2
Blobby is a synaptic active zone assembly protein required for memory in Drosophila.
Nat Commun. 2025 Jan 2;16(1):271. doi: 10.1038/s41467-024-55382-9.
3
Transsynaptic BMP Signaling Regulates Fine-Scale Topography between Adjacent Sensory Neurons.
eNeuro. 2024 Aug 28;11(8). doi: 10.1523/ENEURO.0322-24.2024. Print 2024 Aug.
4
Versatile nanobody-based approach to image, track and reconstitute functional Neurexin-1 in vivo.
Nat Commun. 2024 Jul 18;15(1):6068. doi: 10.1038/s41467-024-50462-2.
5
Presynaptic regulators in memory formation.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.054013.124. Print 2024 May.
6
Mechanisms of spinophilin-dependent pancreas dysregulation in obesity.
Am J Physiol Endocrinol Metab. 2024 Aug 1;327(2):E155-E171. doi: 10.1152/ajpendo.00099.2023. Epub 2024 Apr 17.
8
Presynaptic Cytomatrix Proteins.
Adv Neurobiol. 2023;33:23-42. doi: 10.1007/978-3-031-34229-5_2.
9
A glutamate receptor C-tail recruits CaMKII to suppress retrograde homeostatic signaling.
Nat Commun. 2022 Dec 10;13(1):7656. doi: 10.1038/s41467-022-35417-9.
10
Local BMP signaling: A sensor for synaptic activity that balances synapse growth and function.
Curr Top Dev Biol. 2022;150:211-254. doi: 10.1016/bs.ctdb.2022.04.001. Epub 2022 May 18.

本文引用的文献

1
Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila.
Curr Biol. 2020 Mar 23;30(6):1077-1091.e5. doi: 10.1016/j.cub.2020.01.019. Epub 2020 Mar 5.
2
Intracellular protein complexes involved in synapse assembly in presynaptic neurons.
Adv Protein Chem Struct Biol. 2019;116:347-373. doi: 10.1016/bs.apcsb.2018.11.008. Epub 2018 Dec 20.
3
Homeostatic scaling of active zone scaffolds maintains global synaptic strength.
J Cell Biol. 2019 May 6;218(5):1706-1724. doi: 10.1083/jcb.201807165. Epub 2019 Mar 26.
4
Rapid active zone remodeling consolidates presynaptic potentiation.
Nat Commun. 2019 Mar 6;10(1):1085. doi: 10.1038/s41467-019-08977-6.
6
Towards an Understanding of Synapse Formation.
Neuron. 2018 Oct 24;100(2):276-293. doi: 10.1016/j.neuron.2018.09.040.
8
Subsynaptic spatial organization as a regulator of synaptic strength and plasticity.
Curr Opin Neurobiol. 2018 Aug;51:147-153. doi: 10.1016/j.conb.2018.05.004. Epub 2018 Jun 11.
10
Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses.
Cell Rep. 2018 May 1;23(5):1259-1274. doi: 10.1016/j.celrep.2018.03.126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验